
NAVAL POSTGRADUATE SCHOOL
Monterey, California

o DTIC "
IIS ELECTE !1

j THESIS
v,

I SIovoIZ

AUTOMATED DESIGN OF A MICROPROGRAMMED
CONTROLLER FOR A FINITE STATE MACHINE

by

James Edward Harmon

June 1988

Thesis Co-advisor: D. E. Kirk
Thesis Co-advisor: H. H. Loomis Jr.

Approved for public release; distribution is unlimited

0 "



UNCLASSIFIED

SEC' RITY CiASS,,CATON OF - S :AGE

REPORT DOCUMENTATION PAGE
la REPORT SECR ', C-LSSt;CA ;- 

"  
lb RESTR.CTIVE MARKINGS

UNCLASSIFIED
2a SECURITY C.ASS PCTON A,7-OR C. 3 DISTRIBUTION.'AVAILAB;,:TY OF REPORT

Approved for public release;
2b DEC.ASSFCA-'ON :OWNGRADtNG SC-'EDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NuMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMiNG ORGANIZATION 6o OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (If applicable) Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

6a \AVE Oc riND %G S-O".cO; \V- 8b OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGAN Z TO Q. (If applicable)

Bc ADDRESS (City, State an ZIP Coce" 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

11 TITLE (Include Security Classification)

AUTOMATED DESIGN OF A MICROPROGRAMMED CONTROLLER FOR A FINITE STATE MACHINE

12 PERSONAL AUTHOR(S)

HARMON, James E.
13a TYPE OF REPORT 13b T.ME COVERED 14 DATE OF REPORT (Year, Month, Day) 1s PAGE COUNT

Master's Thesis ;ROM TO f 1988 June 1 231
16 SUPPLEMENTARy NOTATION The views expressed in this thesis are those of the author

and do not reflect the official policy or position of the Department of
Defense or the U.S. Government
17 COSATi CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FELD GROUP SUB-GROUP microprogrammed controller, VLSI design, silicon
compiler, finite state machine

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

A Scalable Complementary Metal Oxide Semiconductor (SCMOS) microprogrammed

controller for the Monterey Silicon Compiler (MSC) is implemented in the

LISP programming language. The internal organization of MSC and the

architectu:e of Very Large Scale Integrated (VLSI) circuits generated by

MSC are discussed.

20 DiSTRIBuTION, AVAILABITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

XT, JNCLASSIFcED UNL%-iZ M;D 0l SAME AS RPT 0l DTIC USERS UNCLASSIFIED
22a NAVE Or RESPONS BLE '"DV!D'A. 22b TELEPHONE (Include AreaCode) z2c OFFICE SYMBOL

H. H. Loomis, Jr. (408)646-3214 62Lm

DD FORM 1473, 8. %1A L 83 APR ed t on may be wsed until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All o )er editions are obsolete a U.S. Government Printing Office 1118-- f

i UNCLASSIFIED



Approved for public release; distribution is unlimited.

Automated Design of a Microprogrammed Controller
for a Finite State Machine

by

James Edward Harmon
Lieutenant Commander, United States Navy

B.S., University of New Mexico, 1975

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 1988

Author: rA
J. E. Harmon

Approved by: 26 4 L
D. E. Kirk, Thesis Co-Advisor

HmiLodis, Thesis Co"dvisor

Pwr, Chairman, Department of
Electrical and Computer Engineering

Gordon E. Schacher,
Dean of Science and Engineering

ii



\ ABSTRACT

A Scalable Complementary Metal Oxide Semiconductor

(SCMOS) microprogrammed controller for the Monterey Silicon

Compiler (MSC) is implemented in the LISP programming

language. The internal organization of MSC and the

architecture of Very Large Scale Integrated (VLSI) circuits

generated by MSC are discussed. ",,";
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I. INTRODUCTION

This thesis encompasses a complete development process.

The goal of this process is to produce a Finite State Ma-

chine (FSM) controller that can be generated by a silicon

compiler. This development supports the silicon compiler

project at the Naval Postgraduate School.

A. SILICON COMPILERS

A silicon compiler' is a collection of computer programs

that translates a high-level description of a Very Large

Scale Integrated (VLSI) circuit into a complete layout that

can be used to fabricate the circuit. The basic function of

a silicon compiler is shown in Figure 1.1. To generate a

layout, the silicon compiler produces instances of standard

cells and interconnects them as required by the circuit de-

scription. The primary advantages of a silicon compiler are

speed and reliability of design. A silicon compiler can

produce a layout in minutes that would take months for a

team of VLSI designers. A good silicon compiler will

consistently produce correct layouts. A layout produced by

hand may include errors. The disadvantage of using a

1 For more information on silicon compilers, see Princi-
Rles of CMOS VLSI Desigin (Weste and Eshraghian, pp. 250-255,
1985) and VLSI Electronics: Microstructure Science

(Einspruch, Vol. 14, pp. 115-138, 1986).
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Circuit Description

Silicon Cell
Compiler Ubrary

Circuit Layout

Figure 1.1 silicon Compiler

silicon compiler is efficiency. A layout produced by a sil-

icon compiler may be larger and slower than a layout pro-

duced by a skilled VLSI designer. Although layouts produced

by future silicon compilers may be able to surpass the effi-

ciency of layouts produced by human designers, current sili-

con compilers are most effective for rapid development of

custom VLSI circuits that will not have large production

runs. For a circuit that will have a large production run,

the higher efficiency and smaller size of a human layout

will offset the increased design cost that can be amortized

over a large number of units. Many military circuits which

have small production runs and require high reliability and

2



short development time are ideal for current silicon

compilers, provided that performance requirements can be

satisfied.

B. MONTEREY SILICON COMPILER (MSC) PROJECT

The Monterey Silicon Compiler (MSC) project at the Naval

Postgraduate School is producing a technology independent

silicon compiler. Based on the MacPitts2 silicon compiler

produced by MIT Lincoln Laboratory, MSC is written in the

LISP 3 programming language. At present, MSC is essentially

a modified version of MacPitts. Thus, the nMOS capabilities

and architecture of MSC are those of MacPitts. Circuit

design specifications processed by MSC are in LISP format.

The layout produced by MSC is a Caltech Intermediate Form

(CIF)4 file that can be used to fabricate a circuit at many

VLSI foundries. MSC currently supports n-channel Metal Ox-

ide Semiconductor (nMOS) technology. Present development

work on MSC involves the addition of Scalable Complementary

Metal Oxide Semiconductor (SCMOS) technology. The micropro-

grammed controller in this thesis supports the SCMOS tech-

nology addition to MSC.

2Use of the MacPitts silicon compiler is described in
Introduction to MacPitts (MIT RVLSI-3, 10 February 1983).

3MSC is written in Franz Lisp. For more information on
Franz Lisp, see LISPcraft (Wilensky, 1984).

4CIF is explained in A Guide to LSI Implementation (Hon
and Sequin, pp. 79-123, January 1980).

3



C. MICROPROGRAMMED CONTROLLER

A microprogrammed controller is an electronic circuit

that generates time based control signals for other cir-

cuits. The general configuration Qf a microprogrammed con-

troller is shown in Figure 1.2. It contains a Read Only

Memory (ROM) and next address logic. The ROM words contain

information for controller output and for next address de-

termination. The status inputs and next address information

are used by the next address logic to determine the next ROM

address. If each output signal corresponds to one bit of

the words in the ROM, the microprogram format is horizontal.

If the outputs are produced by decoding a smaller number of

Clock Device Being Controlled
Status Control

Outputs Inputs

Next Address
Information

Next Read
Next

Clock Address Address Only
Logic Memory

Figure 1.2 Microprogrammed Controller
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bits in the ROM words, the microprogram format is vertical.

Microprogrammed controllers are used in many applications

from traffic lights and microwave ovens to computers. The

MSC application of a microprogrammed controller contained in

this thesis is similar to the controller in a

microprocessor.

D. NAME CONVENTIONS

File name extensions and the file type associated with

them are listed in Table 1.1. The extension is the last

part of a file name. The library file is an exception to

the file name extension convention. This file contains LISP

TABLE 1.1 FILE NAME EXTENSIONS AND FILE TYPES

File Name Extension File Type

No Extension Executable File

.c C Language Source File

.cif CIF File

.ext Circuit Extraction File

.1 LISP Language Source File

.mac MSC Source File

.mag Magic Layout File

.o Compiled Object File

.obj MSC Object File

.sim Simulation File

5



formatted statements that are interpreted while MSC is

running.

E. CONTENT DESCRIPTION

The organization of this thesis matches a phased

development process.
5

1. Analysis Phase

The analysis phase includes planning, setting goals,

and defining requirements. Chapter II starts the analysis

phase with an examination of the nMOS layout produced by MSC

and development of architectural requirements for the

controller. Chapter III includes a description of the pro-

grams and functions in the nMOS MSC and software require-

ments for the controller. Chapter IV completes the analysis

phase with a definition of MSC controller goals and a fusion

of the requirements developed in Chapters II and III.

2. Design Phase

The design phase starts with trade-off studies in

Chapter V. In this chapter, different SCMOS logic struc-

tures and controller organizations are evaluated using the

goals and requirements of Chapter IV. The logic structure

and controller organization selected in Chapter V are used

to create the design presented in Chapter VI. The design in

5Based on the phased life-cycle model in Software Enui-
neering Concepts (Fairley, pp. 37-42, 1985).

6
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Chapter VI is in two sections. One section is technology

independent and one section is for the SCMOS technology.

3. Implementation Phase

The implementation phase is contained in Chapter

VII. The first part of implementation involves installation

of the nMOS MSC and modification to support the SCMOS tech-

nology. The second part of implementation involves layout

and test of each cell in the SCMOS section of Chapter VI.

4. Test Phase

The test phase is documented in Chapter VIII. This

phase involves integration and test of controllers con-

structed from the cells generated in Chapter VII. The sys-

tems produced are verified against the design in Chapter VII

and validated against the requirements in Chapter IV.

5. Maintenance Phase

The maintenance phase of the controller starts with

the conclusions presented in Chapter IX. These conclusions

involve refinements to the design, methods of installing the

controller in MSC, and suggested improvements to the organi-

zation of MSC. Additional research in support of MSC is in-

cluded in these conclusions.

7



II. MSC TARGET ARCHITECTURE

Understanding the physical and functional properties of

the MSC target architecture is crucial to the formulation of

requirements for the microprogrammed controller that is the

subject of this thesis. MSC produces layouts for complete

nMOS VLSI circuits that may include one or more finite state

machine controllers.

A. PHYSICAL LAYOUT

An MSC layout includes pads, a control logic array, a

data path, a flags area, and distribution structures for

signals and power. Figure 2.1 shows the floor plan of an

MSC nMOS VLSI layout. The perimeter of the layout is a pad

frame with pads on three sides. The pads are numbered se-

quentially in a clockwise direction starting at the left pad

on the top edge. Inside the pad frame is a frame for drain

power (Vdd) and ground (GND) distribution. In between the

pad frame and the Vdd and GND frame is a routing channel for

signals to and from the pads. Inside the Vdd and GND frame

are the data path, flags area, and control logic array. The

data path and control logic array are separated by horizon-

tal clock and power buses. The flags area is to the right

of the data path. The pads are used for connections between

the VLSI circuit and the package that encloses it. Word

size data processing is accomplished in the data path and

8



Pad 1 PADS

DATA ROUTING

D. DQ
A. A

N T T.A DATA PATHA

SFLAGS 0 S
D T~ CLOCK BUSSES/DRIVERS T.U1

N DATA/CONTROL ROUTING N .G G

CONTROL

LOGIC ARRAY

POWER FRAMEk

DATA ROUTING

El1 El E] E E]1
PADS

Figure 2.1 MSC Floor Plan
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single bit processing is accomplished in the control logic

array. Word size data storage is performed in the data path

and single bit storage is performed in the flags area.

1. Data Path

The data path in an MSC layout is the area that con-

tains most of the structures used for data processing and

data storage. It is organized horizontally in bit slices

and vertically in units. This organization is shown in

Figure 2.2. Each horizontal bit slice contains all of the

processing elements for one bit of word size data. Each

vertical unit contains similar elements that perform one

function on all bits in word size data structures. There

are five types of units: register, output port, internal

port, bit, and organelle. Register units, shown in Figure

UNIT SLICES

____ LSB ___

I I I

BIT -
SLICES , ,

i* t I

MSB !FLAGS:

Figure 2.2 Data Path organization
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2.31, are used for data storage. Output port units are used

to generate multiple bit output words for pads. Internal

port units are used to generate multiple bit words for use

inside the data path. Output port units and internal port

units have the same internal structure as shown in Figure

2.4. Bit units, shown in Figure 2.5, are used to extract

groups of bits for the control logic array from multiple bit

words in the data path. Organelle units, shown in Figure

2.6, generate single bit outputs of multiple bit logic or

arithmetic functions. Each unit may include one or two mul-

tiplexers to select input sources. Each unit input is

called an argument. Each argument source is called an

operand. For operands that are constant, the operand inputs

are hard wired to ground or power , force constant logical

zero or one inputs. For arguments with single operands, a

degenerate multiplexer that is a direct connection from the

operand to the argument is used. These alternate

multiplexer configurations are shown in Figure 2.7. Operand

selection for the multiplexers in each unit is controlled by

a bus of multiplexer control lines from the control logic

array. Each multiplexer control line enables one operand

for each argument in the unit. Data path internal buses,

iThe units in Figures 2.3 - 2.6 are all shown with two
input multiplexers for each argument. The actual number of
inputs to each multiplexer in a unit is determined by the
number of unique sources and constant values associated with
each argument.
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Internal

Bus
4 --Operands

Clocks Out Data Out

BitO0S Argument In Register

Clocks In

Internal _ _ _ _ _ _ _ _ _ _

4 -Operands j
Clocks Out Data Out

Biti1AgmetI Register
Argmen In Organelle

Clocks In

Internal _ _ _ _ _ _ _ _ _ _

Bus __ _ _ _ _ _ _ _

4 -Operands _________

Clocks Out Data Out

Bit N-1 0sel AgmnIn Register
Arguent Organelle

Clocks In

Load Load
Register
Operand
Select Clocks

Figure 2.3 Register Unit
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Operands .o
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Internal
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______ _____Internal

_____ ____Bus

Operands
Argument

BitO0 SeI ____

Internal
Bus

Bit 1 SelL-

Internal

Bit N-i H Sel 
Bus

Bit Bft Bit
Operand 0 1
Select

Figure 2.5 Bit Unit
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______ _____Internal

_____ ____Bus

BitO0AgmnlI

Organelle

Argument 2 jDais-y

_____Out

_________ Internal_ _ _ _

________Bus

Bit N-i1
Se Out Daisy

- ~ Argument 1 In

Organelle
S- Argument 2 Daisy

Organelle Test Carry

Figure 2.6 Organelle Unit
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Vdd

-E - 4-. Operand

- Argument

"4- Operands
Gnd

S4 se 1, -00Argument

Multiplexer with Multiplexer with
Constant Inputs Single Input

Figure 2.7 Unit Multiplexer Options

located at the top of each bit slice, connect register,

output port, internal port, bit, and organelle units. The

bit slices are stacked to form the data path.

2. Control Logic Array

The control logic array generates control and data

signals that are sent to the data path and pads. All single

bit processing is performed in the control logic array. The

inputs to the array are signals from organelles, registers,

flags, and input pads. The outputs are control signals for

the registers and multiplexers or data signals that are used

for setting flags, internal signals, or output pads. The

16



current nMOS version of MSC uses a Weinberger2 logic array.

Unlike the Programmable Logic Array (PLA), the Weinberger

array is composed exclusively of NOR gates. For example, an

exclusive or (XOR) of two single bit signals is converted to

an equivalent combination of NOR gates in the control logic

array. The inputs and outputs both run in vertical columns.

Ground distribution is also done in vertical columns. The

horizontal tracks are used to determine the relationship be-

tween the inputs and outputs.

B. FINITE STATE MACHINE (FSM) ARCHITECTURE

A finite state machine (FSM) is a clocked circuit that

"remembers information about its past inputs"(Langdon, 1982,

p 522). It is composed of combinational logic and clocked

memory elements that store state variables. "The state is

the totality of the values of all bits ... in stor-

age."(Langdon, 1982, p 522) The relationship between the

inputs and outputs is determined by the current state of the

machine. During each clock cycle, new values of the state

variables are loaded into the memory elements and the ma-

chine transitions to a new state. The new state variable

values are the next state outputs from the combinational

logic. These next state outputs are based on the current

inputs and the old state values stored in the memory

2For a description of a Weinberger array see "Large
Scale Integration of MOS Complex Logic: A Layout
Method"(Weinberger, 1967).
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elements. There are two types of FSMs, the Moore FSM and

the Mealy FSM.

i1o Moore FSM

The Moore FSM shown in Figure 2.8 is the simplest

form of FSM. It consists of storage elements for the state

variables and combinational logic used to determine the next

values of the state variables based on the current values of

the state variables and the input signals. The outputs are

functions of only the state variables. The input signals

Data
Inputs

Combinational
Logic

Present Next
State State

StateVariable
Memory

Clock
S Data

Combinational I Outputs
Logic__

Figure 2.8 Moore Finite State Machine
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affect the next state but not the current outputs. As a

result, the outputs only change during state transition.

2. Mealy FSM

The other type of FSM, the Mealy FSM, is shown in

Figure 2.9. In a Mealy FSM, the outputs are functions of

the state variables and the input signals. The output sig-

nals may change in response to changes in the input signals.

Data Data
Inputs Outputs

CombinationalLogic

Present Next
State State

State Variable
Memory

Clock

Figure 2.9 Mealy Finite State Machine

3. Moore FSM Timing

The timing relationships between the input and out-

put signals of a Moore FSM are shown in Figure 2.10. The

inputs must be stable prior to state transition for a length

of time equal to the sum of the setup time for the registers

and the maximum delay time for the combinational logic. The
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Figure 2.10 Moore FSM Timing

inputs must remain stable after state transition (clock

edge) long enough to satisfy register hold time

requirements. The outputs of a Moore FSM become

undetermined at state transition and remain undetermined for

the duration of the register and combinational logic delays.

After the outputs have stabilized, they remain stable until

the next state transition.
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4. Mealy FSM Timinq

The timing relationships between the input signals

and output signals that depend only on state variables of

the Mealy FSM are the same as the relationships between the

input and output signals of the Moore FSM shown in Figure

2.10. The timing relationships between the input signals

and output signals that are dependent on state variables and

input signals of a Mealy FSM are shown in Figure 2.11. Like

the Moore FSM, the inputs to the Mealy FSM must be stable

prior to state transition for a length of time equal to the

sum of the setup time for the registers and the maximum

delay time for the combinational logic. The inputs must

remain stable after state transition (clock edge) long

enough to satisfy register hold time requirements. The

outputs of a Mealy FSM become undetermined at state

transition and remain undetermined for the duration of the

register and combinational logic delays. After the outputs

that depend only on state variables have stabilized, they

remain stable until the next state transition. The outputs

that also depend on current inputs are stable only when the

inputs they depend on have been stable long enough for the

outputs of the combinational logic to stabilize.

5. State Transition Diaqram

An FSM has a fixed number of states. It can transi-

tion to a subset of these states based on the current state.

In a state transition diagram, this is represented as a

21



STATE
TRANSITION

INPUT
LOGIC SETUP HOLD MAY INPUT
DELAY TIME TIME CHANGE STABLE

INPUT
SIGNALS

OUTPUT
SIGNALS

REGISTER LOGIC OUTPUT

AND LOGIC DELAY STABLE
DELAYS

Clock Edge

Stability not required

Undefined

Stable

Figure 2.11 Mealy FSM Timing

graph with nodes for the states and directed branches for

available state transitions. The choice of which branch to

take from a node is based on inputs to the FSM.

6. Moore FSM State Transition Diagram

In the state transition diagram for a Moore FSM, the

outputs are associated with the nodes. An example of a

Moore FSM state transition diagram for a J-K flip-flop is
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shown in Figure 2.12. The J-K flip-flop is a simple FSM

with a single binary state variable. This single state

variable is also the output of the J-K flip-flop. There are

two states A and B. When the FSM is in state A, the output

is zero. When the FSM is in state B, the output is one.

These states are drawn as circular nodes. Each node has

branches leaving it that return to the same node or transi-

tion to the other node. The branches represent the values

of the input signals during the next state transition. If

the current state is A and J is one, the next state will be

B. This is the lower branch. If the current state is A and

J is zero, the next state will be A. This is the left

branch that returns to the same state. If both J and K are

Stat p
output

01,11

JK = A/0B1,10

00,01

10,11

Figure 2.12 Moore FSM State Transition Diagram
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zero, the state does not change. If both J and K are one,

the state will alternate between A and B every clock cycle.

7. Mealy FSM State Transition Diagram

The state transition diagram for a Mealy FSM is sim-

ilar to the state transition diagram for a Moore FSM. The

only difference is that in the Mealy FSM state transition

diagram, the outputs are associated with the branches. An

example of a Mealy FSM state transition diagram for a tran-

sition detector circuit is shown in Figure 2.13. A transi-

tion detector compares the current input with the input at

the last state transition. If they are the same, no transi-

tion has occurred and a zero is output. If the current and

previous inputs are different, a transition has occurred and

a one is output. The state transition diagram also has two

states A and B. State A corresponds to a zero input at the

INPUT/OUTPUT=

0/1

0/0 1/0

1/1

Figure 2.13 Mealy FSM State Transition Diagram
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last state transition and state B corresponds to a one input

at the last state transition. The left label on each branch

is the current input and the right label on each branch is

the current output.

C. MSC FSM STRUCTURE

The layout produced by MSC may contain one or more modi-

fied Mealy FSMs. The structure of these FSMs is shown in

Figure 2.14. The only state variable used by each of these

FSMs is a state number. The state number is an unsigned

integer in the range of 0 to 2W - 1, where W is the data

path word size. The maximum number of states for each FSM

is 2w . Each FSM may include a fixed depth stack and an

incrementer for state numbers. The selection control of the

multiplexer and the push/pop controls of the optional state

number stack are determined by the MSC design specification

of the current state. If the current state description con-

tains a call statement, the multiplexer selects a call state

number from the combinational logic and a return state from

the incrementer is pushed onto the stack. In this way, the

FSM transitions to the state specified in the call statement

and the number of the state following the call statement is

pushed onto the stack for use by a return statement. If the

current state description contains a return statement, the

multiplexer selects the return state number on the top of

the stack and the stack is popped. This causes the FSM to
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Figure 2.14 MSC Finite State Machine

transition to the state following the state with the most

recently executed call statement. The calls and returns may

be nested so that a subroutine may call another subroutine,

or a subroutine may call itself recursively. There is no

checking for stack overflow or underflow on subroutine calls

and returns. The stack depth specified in the MSC design

26



specification for a process must be large enough to accommo-

date the deepest nesting of subroutines expected in the

process. This depth may be difficult to estimate for

recursive subroutines. If the current state description

contains a go statement, the multiplexer selects the go

state number from the combinational logic. If the current

state (other than the last state in a process) does not in-

clude a call, return, or go statement, the multiplexer se-

lects the next state number from the incrementer. The last

state in a process contains an implicit go statement to the

first state in the process. This implicit go statement is

overridden by any go, call, or return statements in the last

state of a process. The incrementer is used to determine

the next sequential state. If a design has more than one

process, each of the processes is controlled by a separate

FSM.

D. MULTIPLE FSM INTERACTION

There is a separate FSM for each process. The separate

FSMs simultaneously control the common data processing and

storage elements as shown in Figure 2.15. These processes

communicate with each other by registers, flags, signals,I and internal ports. An MSC register is a multiple bit data

structure that continuously stores a value and has the same

number of bits as the data path word size. A flag is a one

bit data structure that continuously stores a value. A
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Figure 2.15 Multiple FSM Interaction

signal is a one bit data structure that only has a value

during the state in which its value is set. An internal

port is a multiple bit data structure that has the same

number of bits as the data path word size and only has a

value during the state in which its value is set. Each

register, flag, signal, or internal port is controlled by a

single FSM controller.

1. nMOS Multiplexer Wired AND Logic

The multiplexers used in the nMOS version of MSC produce a

logical AND of their input values when more than one input

is selected simultaneously. This would happen when a par
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statement or a single alternative of a cond statement for a

state in a process or an always statement in the design

specification assigns multiple values to a register or port.

The following three segments of a design specification

attempt to assign the value of b to a and the value of c to

a simultaneously:

(always (setq a b) (setq a c))

(par (setq a b) (setq a c))

(cond (t (setq a b) (setq a c)))

The action of the wired AND produced by the nMOS

transmission gate multiplexers used in MSC is shown in Fig-

ure 2.163. This shows the outputs of two inverters con-

nected to the transmission gate multiplexer in the center of

the figure. The output of the multiplexer is labeled Out.

The selection controls of the multiplexer are labeled Sel 1

and Sel 2. The inputs to the inverters are labeled In 1 and

In 2. The inputs to the multiplexer are the complements of

the inputs to the inverters or (NOT In 1) and (NOT In 2).

These input signals to the multiplexer are low when the in-

puts to the corresponding inverters are high causing the

enhancement mode pull down transistors to conduct and pull

the outputs down to GND. The input signals to the

multiplexer are high when the inputs to the corresponding

3For a description of the symbols used in this schematic
and all subsequent schematics, see Figure 1.11(b) on page 12
of The Design and Analysis of VLSI Circuits (Glasser and
Dobberpuhl, p. 12, 1985).
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Figure 2.16 multiplexer Wired AND Logic

inverters are low causing the enhancement mode pull down

transistors to be cut off which allows the depletion mode

pull up transistors to pull the outputs up to Vdd. If only

one of the Sel signals is high, the signal at Out is the

normal output of the corresponding inverter. If both of the

Sel signals are high, the outputs of both inverters are con-

nected to the output of the multiplexer. This also connects

the outputs of the inverters to each other allowing either

pull down transistor to pull down all outputs. This turns

the entire circuit into a NOR gate where the output is (NOT

(In 1 OR In 2)). This can be converted to ((NOT In 1) AND

30
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(NOT In 2)) by DeMorgan's Laws4 . This is the logical AND of

the inputs to the multiplexer. This nMOS wired AND in the

multiplexer includes the side effect that the outputs of the

inverters are the AND of the normal outputs throughout the

circuit. If one of the inputs to the multiplexer is a

register, the value stored in the register is forced to the

logical AND of the inputs to the multiplexer. This reverses

the normal signal flow from the output of a register to the

input of a multiplexer. This wired AND can destroy a cir-

cuit if one of the inputs is a constant high (Vdd) and the

other is a constant low (GND). If the multiplexer selects

both these inputs simultaneously, there is a direct path

from Vdd to GND that would probably burn out the

multiplexer. The current nMOS MSC cannot generate a

multiplexer that is controlled by two processes. The inter-

nal functional simulation of MSC generates an error if any

of the multiplexers in a design specification can have more

than one input selected at a time. The ESIM switch level

simulations of nMOS MSC designs with multiple simultaneous

inputs to multiplexers verify the operation of the wired AND

logic.

2. SCMOS Multi~lexer Logic

The SCMOS multiplexer and the nMOS multiplexer

should have the same function. SCMOS circuits use low

4For a statement of DeMorgan's Laws and logical tautolo-
gies, see Introduction to LOGIC(Suppes, p. 34, 1957).
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impedance pull up and pull down structures. This precludes

the use of wired logic. The SCMOS multiplexer cannot dupli-

cate the operation of the nMOS multiplexer for multiple si-

multaneous input selections. Since multiple simultaneous

input selections to multiplexers generate errors for the in-

ternal functional simulation of MSC and cause differences

between SCMOS and nMOS circuits, multiple simultaneous input

selections to multiplexers should not be supported by MSC.

The SCMOS multiplexer should function as a true multiplexer

with no side effects.

E. ARCHITECTURAL REQUIREMENTS

The MSC target architecture implies required character-

istics of a controller. The controller must be composed of

multiple Mealy FSMs. Each FSM must have a single state

variable that is the state number. Each FSM must be able to

include an incrementer and subroutine stack. Each unit in

the data path must be controlled by a single FSM or always

using true multiplexers that produce no side effects. These

requirements will be used to evaluate the suitability of

controller designs.
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III. MSC INTERNAL STRUCTURE

The internal structure of MSC is based on the MacPitts

silicon compiler. Since MSC is currently a modified version

of MacPitts, the internal structures of the two silicon com-

pilers are identical. Analysis of the MSC structure is used

to generate requirements for the controller and to eliminate

design alternatives that are not consistent with this struc-

ture. MSC is a collection of programs that extract informa-

tion from a design specification to produce a functional

simulation of the specification or a Caltech Intermediate

Form (CIF)l file describing a VLSI circuit that implements

the specification.

A. DATA PRIMITIVES

There are four data primitives defined for MSC: signal,

flag, port, and register. These are shown in Table 3.1.

The MSC data primitives correspond to internal nodes in a

VLSI circuit. Signals and flags represent single bit nodes

and ports and registers represent multibit nodes. The num-

ber of bits in ports and registers is determined by the

word-size specified in a design specification. All ports

and registers in a MSC VLSI circuit have the same number of

iFor a description of the format and use of CIF files,
see the CIF primer in A Guide to LSI Implementation(Hon,
1980, pp. 79-123).

33



bits. Signal and port nodes do not have memory while flag

and register nodes do have memory. Nodes that do not have

memory have valid data only during a state that assigns a

value to them. Nodes with memory retain the values that

were last assigned to them until the next state transition.

If no new value is assigned to a node with memory during a

state transition, the node retains its previous value.

Signals and ports may be internal or external. External

nodes are associated with pads in a MSC VLSI circuit and

internal nodes are not associated with pads.

TABLE 3.1 DATA PRIMITIVES

IjSingle Multi-
Bit Bit

No Memory signal port

Memory flag register

B. DATA STRUCTURES

Understanding a program's data structures is a prerequi-

site to understanding its operation. The data structures of

a computer program limit the information that it can input,

manipulate, and output. MSC uses a combination of program
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defined and defstruct2 data structures. Program defined

data structures are those that are not explicitly stated in

the program source code. The program defined data struc-

tures are implied by the functions that create instances of

these data structures or access information in them. All of

these functions are defined in the MSC source code.

Defstruct data structures are explicitly stated using the

defstruct macro. All functions to create instances of

defstruct data structures or access information in them are

automatically generated by the defstruct macro. Both of

these methods use Lisp lists to store data. A design speci-

fication 3 is a text file that contains a functional descrip-

tion of a VLSI circuit to be compiled by MSC. Both the

design specification and the library4 program are read by

MSC at run time. The definition and eval data structures in

the design specification are written by the user. The

definition and eval data structures in the library program

are part of the MSC program. The functions that extract

2Defstruct is a Lisp define structure macro in the lin-
coln.l program. The defstruct macro defines a Lisp data
structure by creating all of the functions required to gen-
erate an instance of the structure and to access all parts
of the structure.(Malagon-Fajar, 1986, pp. 87-95)

3An MSC design specification is a text file whose name
ends in .mac. The data structures used an MSC design speci-
fication are described in An Introduction to MacPitts(MIT
RVLSI-3, 1983).

4The organization and use of the library program is dis-
cussed in Paragraph III.D.7.
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information from these structures are located in the

prepass.l and general.1 programs. All other data structures

are created and accessed by functions generated by the

defstruct macro. The layout structure for an item composed

of points, rectangles, symbol names, and operators and the

hierarchical symbol layout data structure are defined in the

program L5.1. The symbol data structure is created and ma-

nipulated by functions in the L5.1 program. The object

structure in an .obj file, the extraction structure used to

produce it, and other internal data structures are defined

in the program defstructs.l.

C. CONTROL AND DATA FLOW

The control flow of MSC is shown in Figure 3.1. The MSC

compiler is controlled by the top level function macpitts-

compiler in prepass.l. At the start of a compilation,

command line options are processed by functions in

prepass.l. If a functional simulation is requested, the de-

sign specification is interpreted by functions in the pro-

gram interpret.l. The design specification file and library

file are read by functions in prepass.l. Definition extrac-

tion, eval evaluation, macro expansion, and constant substi-

tution are performed by functions in prepass.l and general.l

on the information in the design specification file and

library. The compiled organelles.o program is loaded by an

eval structure in library. If an .obj file is requested,
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Figure 3.1 MSC Control Flow
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the data path, flags, control, and pad information for the

object structure in the file is extracted and reduced by

functions in extract.l. If an .obj file is not requested

and an .obj file exists, the .obj file is read into an

object structure by the get-object function in prepass.l.

If CIF output is requested, the object structure is con-

verted into an item by the layout-object function in the

frame.l program. The item is output in CIF format by the

cifout function in L5.1.

D. PROGRAM COMPONENTS

MSC is generated under the control of a Makefile 5 by

loading compiled programs into Franz Lisp and using the

dumplisp function to save the resulting Lisp environment in

an executable file. One program source, c-routines.c, is

written in the C programming language. All other program

sources are written in Lisp.

1. Program lincoln.l

Program lincoln.l contains MIT Lincoln Laboratory

general purpose extensions to the Franz Lisp environment.

Functions to add use of the vi editor from inside the Franz

Lisp environment, access to the UNIX 6 curses 7 terminal

5For a description of the make utility, see "Made to Or-
der"(Shelly, 1986, pp. 128-131) or Make - A Program for
Maintaining Computer Proqrams(Feldman, 1978).

6UNIX is a Trademark of Bell Laboratories.
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screen updating and cursor movement optimization package,

APL8 like operators for lists, set functions, list selection

functions, numeric functions, and program beautification

macros to Franz Lisp and the Liszt compiler. The most im-

portant component of lincoln.l is the defstruct (define

structure) macro. The defstruct macro is used to define the

majority of the data structures used in MSC.(Crouch, 1984)

2. Program c-routines.c

The program c-routines.c is the only component of

MSC that is written in the C programming language. The

functions in this program provide Franz Lisp bindings for

the routines in the UNIX curses library. The compiled ver-

sion of this program, c-routines.o, is loaded by lincoln.l.

The only component of MSC that uses these routines is

interpret.l. Interpret.l uses the routines in c-routines.c

to update the terminal display during functional simulation

of a design specification.

7Curses is a library of terminal independent screen up-
dating functions.(UNIX Programmer's Manual, 1983, Section
3X) and (Arnold, not dated).

8 "APL n. [...A Programming Language.] A language, de-

vised by K. Iverson (1961), so compacted that the source
code can be freely disseminated without revealing the pro-
grammer's intentions or jeopardizing proprietary
rights."(Kelly-Bootle, 1981, p. 13)
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3. Proaram L5.1

Program L5.1 implements the L59 language for mask

level integrated circuit layout. It contains the defstruct

definitions for the item and symbol data structures. CIF

file output of these structures is performed by the function

cifout. The functions in L5.1 are used by all layout func-

tions in MSC. CIF output compatible with the Magic layout

editor, SCMOS layout primitives, and a layout-label option

in the item data structure are additions to MSC that support

development of the microprogrammed controller described in

Chapter VI.

4. Program defstructs.l

The defstructs.l program contains definitions of

object, extraction, and other internal data structures.

Functions to support these data structures are all generated

by the defstruct macro in lincoln.l.

5. Program front-page.l

The front-page program is loaded by the include

function during compilation of MSC Lisp programs. This pro-

gram establishes global variables required by MSC and uses

the fasl function to load the lincoln.o, L5.o, and

defstructs.o programs.

9For a description of the L5 layout language, see L5
User's Guide(MIT RVLSI-5, 7 March 1984).
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6. Program DreDass.l

The prepass.1 program includes the top level func-

tions of MSC. All MSC operations are controlled by the

macpitts-compiler function in this program. Included in

prepass.l are functions that process command line options.

If the command line includes the "int" option, the macpitts-

compiler function calls the interpret function in

interpret.1 to perform a functional simulation. If the com-

mand line includes the "cif" option, the macpitts-compiler

uses other functions in prepass.1 to read a design specifi-

cation and library, extract definitions, evaluate evals, ex-

pand macros, and perform constant substitutions. The

macpitts-compiler function uses functions in extract.1 to

convert the definitions into an extraction data structure.

The macpitts-compiler function converts the extraction data

structure into an object data structure to pass to the

layout-object function in frame.l.

7. Program library

The library program is a text file that contains

definition and eval data structures. The library program

starts with a library definition followed by constant defi-

nitions, macro definitions, function definitions, test

definitions, and organelle 10 definitions. The library defi-

nition marks the beginning of the library definitions in an

10"An organelle is the actual layout of a single bit of
a function."(MIT RVLSI-3, 10 February 1983, p 25)
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object. This mark is used to remove the library definitions

from an object before it is written to an .obj file. The

constant definitions and macro definitions are used to ex-

pand elements of the design specification file into compo-

nents. Components are used to construct extraction data

structures. The function definitions and test definitions

are used by the interpret.1 program to perform a functional

simulation of the design specification and by the expand-

form function in the prepass.1 program to validate functions

and tests in a design specification. The organelle defini-

tions are used by the data-path.l program to instantiate an

organelle (layout an instance of an organelle) and to pro-

vide information about the dimensions, connections,

electrical characteristics, and logical function of an

organelle. The library program also contains an eval func-

tion that loads the organelles.o program. The library pro-

gram is interpreted at run time. Three UNIX directories are

searched to find the library program. First, the current

directory is searched for the library program. Next, a sub-

directory of the user's home directory named macpitts is

searched. Finally, the directory contained in the macpitts-

directory Lisp variable is searched.11  The first library

program found by this search is read by the get-library

function in the prepass.l program.

llFor a description of the UNIX directory system, see
(McGilton and Morgan, 1983, pp. 33-83).
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8. Proaram oraanelles.1

The organelles.1 program contains all of the

technology dependent functions required to layout organelles

in the data path. The nMOS version of organelles.1 contains

building blocks to construct basic inverter, NAND, and NOR

gates. These gates are combined to form more complex func-

tions. Input and output structures are added to the func-

tions to form organelles. The SCMOS version of organelles.l

does not use a hierarchical method to construct organelles.

The SCMOS organelles are constructed as single items based

on Magic 12 layouts. The functions in organelles.1 are

called by the organelle definitions in the library program.

The compiled organelles.o program is loaded at run time by

an eval in the library program.

9. Proaram general.l

The general.1 program contains general purpose

layout aids, a river router, controller track allocation

functions, look up and query functions for data structures,

and display functions. The layout aids are functions that

produce nMOS superbuffers. The river router is a simple

router used to construct the connections between the control

logic array and the data path. The river router is also

used by the layout-organelle function in the data-path.l

program to construct the data path internal bus. The track

12Magic is a VLSI layout editor program.
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allocation functions are used to determine the tracks

(horizontal signal connections) that correspond to the re-

quired signals in the control logic array. The look up and

query functions for data structures are used to access the

definitions part of the object data structure. The display

functions are used to display notes, warnings, statistics,

and heralds. Note and warning functions print error and

warning messages on the console. Statistic and herald func-

tions print general information messages on the console.

Printing of these messages is controlled by the stat,

nostat, herald, and noherald command line options. Herald

messages include the total Central Processor Unit (CPU) time

and the amount of CPU time used for garbage collection.

These times are displayed in sixtieths of a second.

10. Program extract..

Program extract.1 is used by the get-object1 func-

tion in the prepass.1 program to decompose always and

process components into lists of operand dat& structures.

The operand data structures are converted into an extraction

data structure. The always and process components are part

of a design specification. The operand and extraction data

structures are defined in the defstructs.l program. The

four top level functions in the extract.1 program that are

called by the get-object function in prepass.l are get-se-

quencers-from-component-list, get-sequencers-required-defi-

nitions, extract-component-list, and post-process.
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a. Get-sequencers-from-component-list

Get-sequencers-from-component-list is a recur-

sive function that translates a list of components into a

list of sequencer data structures. The sequencer data

structure is defined in the defstructs.1 program. A

sequencer is a group of units in the data path that stores

13and manipulates the state number of a process . The three

types of sequencers are counter-stack, counter-no-stack, and

no-counter-no-stack. These types of sequencers and the data

path components that support them are listed in Table 3.2.

TABLE 3.2 SEQUENCER TYPES

Counter- Counter- No-Counter-
Stack No-Stack No-Stack

internal port yes yes yes

state register yes yes yes

incrementer yes yes no

LIFO stack yes no no

(1) No-Counter-No-Stack. The no-counter-no-

stack sequencer is the simplest sequencer. The layout of

the sequencer, produced by the layout-data-path defsymbol in

the data-path.1 program, includes a register unit, an

13For a discussion of processes and state numbers, see
Paragraph II.D.
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internal port unit, and a bit unit14 . This type of

sequencer is used for processes that use explicit go state-

ments for all state transitions. The following process def-

inition from a design specification has two states and uses

explicit go statements. It requires a no-counter-no-stack

sequencer.

(process ncns 0
statel

(par (setq a b) (go state2))
state2

(par (setq b c) (go statel)))

(2) Counter-No-Stack. The counter-no-stack

sequencer is used for processes that do not use call and

return statements and do not have explicit go statements for

all state transitions. The layout of the sequencer, pro-

duced by the layout-data-path defsymbol in the data-path.1

program, includes an incrementer type (1+) organelle unit in

addition to the units used in a no-counter-no-stack

sequencer. The following process definition from a design

specification has two states and does not use call, return,

or explicit go statements.

(process cns 0
(setq a b)
(setq b c))

(3) Counter-Stack. The counter-stack sequencer

is used for processes that contain call and return

14For a description of the operation of the units in a
sequencer, see Paragraph V.B.l.a.
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statements. The layout of the sequencer, produced by the

layout-data-path defsymbol in the data-path.1 program, in-

cludes additional register units in addition to the units

used in a no-counter-no-stack sequencer. The following

process definition from a design specification has five

states and uses call and return statements. The third ele-

ment of the process definition specifies a stack depth of

one so a single additional register unit is added by layout-

data-path.

(process cs 1
main

(setq a b)
(call sub)
(go main)

sub
(setq b c)
(return))

b. Get-sequencers-required-definitions

The get-sequencers-required-definitions function

returns a list of register, internal port and signal,

source, and destination definitions for the sequencers pro-

duced by the get-sequencers-from-component-list function.

Tables 3.3, 3.4, and 3.5 list the definitions generated for

each type of sequencer. At execution time, procname in

these tables is replaced by the process name assigned in a

design specification. A counter-stack sequencer requires

definitions for a state register, internal go, call, and

return signals, and a next-state internal port. In addi-

tion, a register definition is required for each level of
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TABLE 3.3 COUNTER-STACK SEQUENCER DEFINITIONS

Definition Type Definition Name

register sequencer-procname-state

source sequencer-procname-state

destination sequencer-procname-state

internal signal sequencer-procname-go

source sequencer-procname-go

destination sequencer-procname-go

internal signal sequencer-procname-cal 1

source sequencer-procname-cal 1

destination sequencer-procname-call

internal signal seguencer-procname-return

source sequencer-procname-return

destination seguencer-procname-return

internal port sequencer-procname-next-state

source sequencer-procname-next-state

destination sequencer-procname-next-state

register sequencer-procname-stack-#

source sequencer-procname-stack-#

destination sequencer-procname-stack-#

Note: The last three entries are repeated for eachIlevel of the LIFO stack with # replaced by

the stack level.
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TABLE 3.4 COUNTER-NO-STACK SEQUENCER DEFINITIONS

Definition Type Definition Name

register sequencer-procname-state

source sequencer-procname-state

destination sequencer-procname-state

internal signal sequencer-procname-go

source sequencer-procname-go

destination sequencer-procname-go

internal port sequencer-procname-next-state

source sequericer-procname-next-state

destination sequencer-procname-next-state

TABLE 3.5 NO-COUNTER-NO-STACK SEQUEN~CER DEFINITIONS

Definition Type Definition Name

register sequencer-procname-state

source sequericer-procname-state

destination sequencer-procname-state

internal port sequencer-procname-next-state

source sequencer-procname-next-state

destination sequencer-procname-next-state

the LIFO stack. A counter-no-stack sequencer requires defi-

nitions for a state register, internal go signal, and a

next-state internal port. A no-counter-no-stack sequencer
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requires definitions for a state register and a next-state

internal port. All sequencers also require source and

destination definitions for all registers, ports and

signals. A source definition indicates that a data primi-

tive is used to provide a value. A destination definition

indicates that a data primitive is assigned a value.

c. Extract-component-list

The extract-component function converts a

component-list into an extraction data structure. A

component-list is a list of par, if, setq, nor, bit, go,

call, and return components for each process or always in

the design specification. A component-list also contains

functions and tests from the design specification. The def-

initions of valid functions and tests are in the library

program. The library program also contains macro and

constant definitions that are used to convert a design spec-

ification into components. The extraction data structure is

defined in the defstructs.l program.

d. Post-process

The post-process function expands and optimizes

the extraction data structure. Each unit in the data path

is assigned a unique unit number by the assign-bus-numbers

function. Units are the word sized building blocks of the

data path. The five types of units are register, output

port, internal port, bit, and organelle. Units include

multiplexers that are connected to the control logic array.
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The multiplexers determine the input sources of the units.

If the opt-d (data path optimization) command line option is

selected, the order function in the order.l program is used

to optimize the order of the units in the data path to mini-

mize the number of tracks in the data path internal bus.

The columns in the control logic array that represent

control lines, test lines, drive lines, bit lines, and arg

lines for the units in the data path are arranged to match

the order of the units in the data path. These lines are

the connections between the data path and the control logic

array. This completes the construction of an extraction

data structure.

11. Program order.l

Program order.l contains the top level order func-

tion that is used to optimize the placement of units in the

data path and gates in the control logic array. The order

function is called by the post-process function in extract.l

to optimize the placement of units in the data path to re-

duce the number of tracks in the data path internal bus.

The order function is called by the layout-object function

in frame.l to optimize gate placement to reduce the number

of tracks in the control logic array. Command line options

beginning with "opt-" control the operation of the order

function. The opt-d command line option enables

optimization of unit placement in the data path. The opt-c

command line option enables optimization of gate placement
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in the control logic array. The opt-n command line option

disables the restriction that the order of columns in the

control logic array must match the order of control lines,

test lines, drive lines, bit lines, and arg lines for the

units in the data path. The opt-n command line option

should not be used with the current method of connecting the

data path to the control logic array. The opt-n command

line option may be used in the future if a method of con-

necting the control logic array to the data path that allows

crossing of runs is added to MSC. The opt-p command line

option enables printing of the current permutation and

optimization status messages on the terminal. The opt-s

command line option enables printing of a list of segments

after the current permutation of the opt-p command line op-

tion. The opt-s command line option is inactive if the opt-

p command line option is not specified. There are debugging

functions named opt, order-this, this-node-column, and this-

segment-nodes that demonstrate the operation of the order

function.

12. ProQram frame.l

The frame.l program contains the top level function

layout-object that is called by the macpitts-compiler func-

tion in prepass.l. The layout-object function converts an

object data structure into an L5 item data structure. The

item is converted into a CIF file by the cifout function in

L5.1. The top level of the hierarchical item contains
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connections between the pads, data path, and control logic

array, a set of L5 symbols that contain the lower level

structures of the layout, and marks associated with the

names of the pad signals. The lower level symbols are named

layout-data-path, layout-control, layout-flags, layout-wing,

layout-skeleton, and layout-pins. All symbols are created

using the defsymbol macro in L5.1. The defsymbol defini-

tions for layout-wing, layout-skeleton, and layout-pins are

in frame.l. The defsymbol definition for layout-data-path

is in data-path.l, the defsymbol definition for layout-con-

trol is in control.l, and the defsymbol definition for

layout-flags is in flags.l.

13. Program data-path.l

The data-path.l program contains the L5 defsymbol

macro definition for the layout-data-path symbol. The

layout-data-path defsymbol is called by the layout-object

function in frame.l. The top level of the L5 item data

structure returned by layout-data-path contains all of the

data path internal buses and a layout-unit symbol for each

unit in the data path. Units are the word sized building

blocks of the data path. The five types of units are

register, output port, internal port, bit, and organelle15 .

Units include multiplexers that are connected to the control

logic array. The multiplexers determine the input sources

1 5For a description of units, see Paragraph II.A.1.
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of the units. The layout for all units in the data path is

performed by the layout-unit function in data-path.l. The

layout-unit function calls the layout-organelle function in

data-path.l to build each bit of the unit. The layout-or-

ganelle function calls the lookup-gen-form function in

general.l to find the layout of an organelle in the unit.

The layout-organelle function then calls the layout-mpx

function to layout the multiplexer, the layout-gen-form

function to instantiate (generate an instance of) the layout

of the organelle, and the river function in general.l to

layout the data path internal bus. The functions that are

called by the layout-mpx function generate four types of

multiplexers: layout-mpxO, layout-mpxl, layout-mpx2, and

layout-mpx3. The layout-mpxO multiplexer has no constant

(wired) inputs, the layout-mpxl multiplexer has logical one

constant (wired) inputs, the layout-mpx2 multiplexer has

logical zero constant (wired) inputs, and the layout-mpx3

multiplexer has both logical zero and logical one constant

(wired) inputs. Degenerate multiplexers with single inputs

are produced by the layout-singleton-operand-list and the

layout-mpx functions. The functions and defsymbols used to

construct register, output port, internal port, and bit

organelles and multiplexers are in data-path.l. The output

port and internal port use the same layout-port-output

function.
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14. Program control.l

The control.l program contains the top level layout-

control defsymbol definition that is called by the layout-

object function in the frame.l program. The layout-control

defsymbol returns a symbol containing the layout of the

control logic array. The layout-control defsymbol merges

the items returned by the layout-weinberger-gates function

and the layout-weinberger-straps defsymbol to build the

control logic array.

15. Program flags.l

The flags.l program contains the top level layout-

flags defsymbol definition. The layout-flags defsymbol is

called by the layout-object function in the frame.l program.

Layout-flags returns a symbol item containing the registers

for single bit data.

16. Program pads.l

The pads.l program is generated by the padgen.l pro-

gram. Pads.l contains layout functions and defsymbols for

all of the pad connections. The pads.l layout functions are

called by the layout-pad function in frame.l. Since the

pads.l program is machine generated, the file is deleted by

the make clean Makefile command. The make pads.l, make

pads.o, make macpitts, and make Macpitts Makefile commands

cause the pad3.l program to be generated.
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a. Program padQen.1

The padgen.1 program contains the top level main

function that generates the pads.1 program. The main func-

tion uses the read-cif function to read the pad2Ob and

rinout pad CIF files.

b. Pad File Rad20b

The pad20b pad CIF file contains CIF descrip-

tions of the layout of four micron minimum feature size nMOS

pads. This file is read by the read-cif function in the

padgen.l program. The information in pad20b is used to gen-

erate the pads.l program.

c. Pad File rinout

The rinout pad CIF file contains CIF descrip-

tions of the layout of five micron minimum feature size nMOS

pads. This file is read by the read-cif function in the

padgen.1 program. The information in rinout is used to gen-

erate the pads.1 program.

17. Program interpret.l

The interpret.1 program contains the top level

interpret function that is called by the macpitts-compiler

function in prepass.1 to perform a functional simulation of

a design specification. The interpret function uses many of

the same functions in the prepass.1 and general.1 programs

that the macpitts-compiler function uses to get information

from the design specification and library files. The

function and test definitions in the library program are
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also used in the functional simulation of a design speci-

fication. The curses terminal screen updating and cursor

movement optimization package functions in the c-routines.c

program are used to display the results of the functional

simulation on the terminal.

18. Makefile

The Makefile is used to generate the MSC compiler

and maintain the files in the macpit directory. The

Makefile uses the UNIX make facility to generate a program

that is current with respect to the sources that are used to

generate the program. If the program is current, the make

commands do nothing. The Makefile contains commands to make

the c-routines.o, lincoln.l, L5.o, defstructs.o, prepass.o,

extract.o, frame.o, data-path.o, control.o, flags.o,

padgen.o, pads.o, order.o, general.o, interpret.o, and

organelles.o object files and the pads.1 machine generated

Lisp file. The make macpitts command generates an exe-

cutable version of the MSC compiler with the name macpitts.

The make Macpitts command installs the macpitts file with

the name Macpitts on all three ISI workstations. The make

Macpitts command also copies the current library and

organelles.o files from the ISIO workstation to the ISI1 and

ISI2 workstations. The make xref command generates and

prints a cross reference file named xref for the MSC com-

piler. The make clean command removes all excess files from
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the macpit directory on the ISIO workstation. The make doc

command prints all documentation and sources.

E. MSC INTERNAL STRUCTURE REQUIREMENTS

The MSC internal structure implies required characteris-

tics of a controller. The controller must be constructed

from hierarchical components. The combination of these com-

ponents must be easily derived from an extraction or object

data structure. The building blocks should be technology

independent so that the same program can be used with dif-

ferent technologies. The software to produce the controller

must be able to replace the corresponding programs and func-

tions in the current nMOS MSC. These requirements will be

used to evaluate the suitability of controller designs.
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IV. CONTROLLER GOALS AND REQUIREMENTS

"Goals are targets for achievement, and serve to estab-

lish the framework for a software development project" and

"Requirements specify capabilities that a system must pro-

vide in order to solve a problem."(Fairley, 1985, pp. 32,

33) It is crucial that goals and requirements be estab-

lished in the analysis phase of a project before entering

the design phase. In the design phase, goals are used to

evaluate alternative design decisions and requirements are

used to reject alternatives that will not solve the problem.

In the implementation phase, the goals provide direction for

construction of the structures specified in the design. In

the testing phase, the requirements provide the acceptance

criteria used to validate the performance of the system.

The goals for this controller design are derived from the

goals of the MSC development project and the requirements

are based on the analysis performed in Chapters II and III.

A. MSC CONTROLLER GOALS

T e primary goal of the MSC development project is to

produce a version of MSC that is capable of producing an

SCMOS VLSI circuit. An extension of this goal is to produce

a silicon compiler that is capable of producing a VLSI cir-

cuit in any existing or future technology. MSC should be

designed for easy addition of new technologies. As much of
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the system as possible should be technology independent.

Technology dependent functions should be confined to the

library and organelles.o programs that are loaded at run

time. The SCMOS version of MSC should produce layouts that

are compact and fast. Growth of the size of a layout should

be a linear function of the complexity of the design speci-

fication for the layout. Geometric or exponential growth is

to be avoided. Module interconnections should be simple.

Modules should interconnect by abutting or overlapping when-

ever possible. The MOS transistors should be operated in

the saturation or cutoff modes to reduce power consumption.

Resistive pull up structures are to be avoided. Substrate

and well contacts should be used in every cell to reduce the

possibility of latch up. Long wiring runs, especially in

polysilicon, are to be avoided. The purpose of these goals

is to produce VLSI circuits that are small, fast, and

efficient.

B. MSC CONTROLLER REQUIREMENTS

The MSC controller requirements are the results of the

analysis in Chapters II and III of the target architecture

and internal structure of MSC. To become part of a SCMOS

silicon compiler, the controller must satisfy all of these

requirements. The controller must be composed of multiple

Mealy FSMs that have a single state number state variable

and may include an incrementer and subroutine stack. Units
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in the data path are controlled by single FSMs using true

multiplexers that have no side effects. All effects of

multiplexer selection must be local to the output of the

multiplexer and not global to the entire circuit. These

FSMs must be constructed from hierarchical components and be

easily derived from an extraction or object data structure.

The software to produce the controller must be able to re-

place the corresponding programs and functions in the cur-

rent nMOS MSC. These requirements will be used to eliminate

design alternatives that do not satisfy the requirements and

to validate the final controller implementation.
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V. ARCHITECTURE TRADE-OFF STUDIES

The architecture trade-off studies are the start of the

design phase of the controller development. In this first

part of the design phase, different SCMOS logic structures

and organizationsI are evaluated to determine which are ca-

pable of fulfilling the controller requirements. After the

structures and organizations that cannot meet the

requirements are eliminated, those remaining are evaluated

using the controller goals to determine which structure and

organization have the greatest compliance with the goals.

These are the structure and organization that will be used

for the controller. The SCMOS logic structures that are

evaluated are static CMOS complementary logic, pseudo-nMOS

logic, dynamic CMOS logic, clocked CMOS logic, CMOS domino

logic, cascade voltage switch logic, modified domino logic,

and transmission gate logic. The SCMOS organizations that

are evaluated are standard cells, programmable logic arrays

(PLAs), Weinberger arrays, and microprogram read only memory

(ROM).

iFor a complete description of CMOS logic structures and
organizations, see Chapters 5 and 8 in Principles of CMOS
VLSI Design(Weste and Eshraghian, pp. 160-189 and 310-378,
1985).
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A. LOGIC STRUCTURE TRADE-OFF STUDIES

The logic structure trade-off studies start with a

requirements analysis to eliminate structures that do not

meet the requirements. This is followed by a goals analysis

to determine how closely each structure conforms to the

controller goals. The structure with the closest confor-

mance to the goals is the logic structure that will be used

for the controller. All structures considered are homoge-

neous. Hybrid structures may be more efficient than the

homogeneous structures but the programs that generate them

would be more complex and circuits built of hybrid struc-

tures would not be regular. Hybrid structures would be a

form of optimization that would sacrifice program maintain-

ability for small gains in size or speed. Thus, hybrid

structures will not be used in this controller.

1. Structural Reguirements Analysis

The structural requirements analysis examines each

structure and decides whether or not the structure is capa-

ble of satisfying the requirements. All structures that

cannot satisfy the requirements are eliminated from further

evaluation. The requirements used to screen structures are

that the controller must be a modified Mealy FSM and that

the controller must be constructed from hierarchical compo-

nents. Basic logic functions of a structure must be easily

cascaded or connected to form more complex logic functions

in a hierarchical design.
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a. Static CMOS Complementary Logic

Static CMOS complementary logic uses active pull

up and pull down structures that are duals of each other.

The pull up structure is composed of p-type transistors and

the pull down structure is composed of n-type transistors.

The duals of pull down structures connected in parallel are

pull up structures connected in series and the duals of se-

ries pull down structures are parallel pull up structures.

An example of a static CMOS complementary logic gate is in

Figure 5.1. The output of this gate is the function (NOT

((A AND B) OR C)). The gate has twice as many transistors

as there are inputs to the gate. The output is continuously

responsive to changes in the inputs. This structure can be

used to build a Mealy FSM. Basic logic functions of static

CMOS complementary logic are easily cascaded or connected to

form more complex logic functions in a hierarchical design.

Static CMOS complementary logic is capable of satisfying all

design requirements.

b. Pseudo-nMOS Logic

The pseudo-nMOS logic is similar to normal nMOS

logic. The only difference is that the depletion mode

n-type pull up transistor in nMOS is replaced by an en-

hancement mode p-type pull up transistor in pseudo-nMOS. An

example of a pseudo-nMOS logic gate is in Figure 5.2. The

output of this gate is the function (NOT ((A AND B) OR C)).

The gate has one more transistor than there are inputs
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Figure 5.1 Static CMOS Complementary Logic

to the gate. This savings in the number of transistors is

the result of eliminating the pull up structure that is the

dual of the pull down structure in static CMOS

complementary logic. The output is continuously responsive

to changes in the inputs. The gate draws power whenever the

pull down is active. This structure can be used to build a

Mealy FSM. Basic logic functions of pseudo-nMOS logic are

easily cascaded or connected to form more complex logic

functions in a hierarchical design. Pseudo-nMOS logic is

capable of satisfying all design requirements.
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Figure 5.2 Pseudo-nMOS Logic

c. Dynamic CMOS Logic

Dynamic CMOS logic combines the simplicity of

pseudo-nMOS with reduced power consumption. This structure

takes advantage of the capacitance in the output node of the

gate. Under control of a clock, the output node is alter-

nately precharged to one and conditionally discharged to

zero. If the logic function of the pull down structure

is satisfied, the output node is pulled down to zero during

the evaluation phase of the clock. If the logic function of

the pull down structure is not satisfied, the output node

remains a logic one during the evaluation phase of the

clock. An example of a dynamic CMOS logic gate is in Figure

5.3. The output of this gate is the function (NOT ((A AND
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Figure 5.3 Dynamic CMOS Logic

B) OR C)). The gate has two more transistors than there are

inputs to the gate. Dynamic CMOS gates are not easily cas-

caded. To reliably connect cascaded dynamic CMOS gate out-

puts to other dynamic CMOS gate inputs requires transmission

gates and four phase clocking. One .lock phase of delay

from input to output is encountered for each level of logic.

The output is not continuously responsive to changes in the

inputs. During precharge, the output is independent of the

input. During evaluation, the output may transition from

one to zero if the pull down logic becomes satisfied. The

output may not transition from zero to one during
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evaluation. This structure can be used to build a Moore

FSM. This FSM would have a complicated clock cycle that may

include several cycles of a four phase clock for every state

transition. The dynamic CMOS logic could not be used to

build a Mealy FSM. Basic logic functions of dynamic CMOS

logic are not easily cascaded or connected to form more com-

plex logic functions in a hierarchical design. Dynamic CMOS

logic is not capable of satisfying all design requirements.

d. Clocked CMOS Logic

Clocked CMOS logic is static CMOS complementary

logic with a clocked transmission gate added to the output.

An example of a clocked CMOS logic gate is in Figure 5.4.

The output of this gate is the function (NOT ((A AND B) OR

C)). The gate has two more transistors than two times the

number of inputs to the gate. Clocked CMOS logic is more

complex and slower than static CMOS complementary logic.

The output of the gate is not responsive to the input to the

gate when the clock is zero. Clocked CMOS logic could be

used to build a Moore FSM but not a Mealy FSM. Basic logic

functions of clocked CMOS logic are easily cascaded or con-

nected to form more complex logic functions in a hierarchi-

cal design. Clocked CMOS logic is not capable of satisfying

all design requirements.
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Figure 5.4 Clocked CMOS Logic

e. CMOS Domino Logic

CMOS domino logic gates are dynamic CMOS logic

gates with static CMOS complementary logic inverters on the

output. By inverting the output of each gate, CMOS domino

logic gates can be easily connected in cascade configura-

tions. An example of a CMOS domino logic gate is in Figure

5.5. The output of this gate is the function ((A AND B) OR

C). The gate has four more transistors than there are

inputs to the gate. The output is not continuously
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Figure 5.5 CMOS Domino Logic

responsive to changes in the inputs. During precharge, the

output is independent of the input. During evaluation, the

output may transition from zero to one if the pull down

logic becomes satisfied. The output may not transition from

one to zero during evaluation. This structure can be used

to build a Moore FSM. The CMOS domino logic could not be

used to build a Mealy FSM. Basic logic functions of CMOS

domino logic are easily cascaded or connected to form more

complex logic functions in a hierarchical design. CMOS

domino logic is not capable of satisfying all design

requirements.
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f. Cascade Voltage Switch Logic

Cascade voltage switch logic requires complemen-

tary inputs and produces complementary outputs. Each gate

uses two n-type pull down structures that are the duals of

each other. The output of each pull down structure is con-

nected to the gate of a single p-type pull up transistor for

the other output. This form of cascade voltage switch logic

is slower than static CMOS complementary logic. For a short

time during switching, the pull up and pull down structures

for one of the outputs are both active. An example of a

cascade voltage switch logic gate is in Figure 5.6. The

output of this gate is the function (NOT ((A AND B) OR C)).

The gate has two more transistors than twice the number of

inputs to the gate. The output does respond continuously to

changes in the input signals. A more efficient version of

cascade voltage switch logic is clocked with precharge and

evaluate transistors similar to dynamic CMOS logic on each

pull down structure and inverters on each output like CMOS

domino logic. The outputs of the clocked cascade voltage

switch logic gates are not continuously responsive to

changes in the inputs. During precharge, the outputs are

independent of the inputs. During evaluation, the outputs

may transition from zero to one if their pull down logic be-

comes satisfied. The outputs may not transition from one to

zero during evaluation. The static version of cascade volt-

age switch logic could be used to construct a Moore or
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Mealy FSM. The clocked version of cascade voltage switch

logic could be used to construct a Moore FSM but not a Mealy

FSM. Basic logic functions of cascade voltage switch logic

are easily cascaded or connected to form more complex logic

functions in a hierarchical design. The static version of

cascade voltage switch logic can satisfy the controller

requirements and the clocked version of cascade voltage

switch logic cannot satisfy the controller requirements.

g. Modified Domino Logic

Modified domino logic is an improvement on CMOS

domino logic. In modified domino logic, cascade combina-

tions of gates are composed of alternate p-type and n-type
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gates. The n-type gates are similar to CMOS domino logic

gates without the inverters on the outputs. The p-type

gates are made of combinations of single n-type transistors

to precharge the outputs to zero and p-transistor pull up

structures that are the duals of the n-type structures for

the same gate function. The clock for the p-type gates is

the inverse of the clock for the n-type gates. By elimi-

nating inverter outputs, the layout of modified domino logic

is more compact than CMOS domino logic. The operation of

the modified domino logic is similar to CMOS domino logic.

Modified domino logic could be used to construct a Moore FSM

but not a Mealy FSM. Basic logic functions of modified

domino logic are easily cascaded or connected to form more

complex logic functions in a hierarchical design. Modified

domino logic cannot meet the controller requirements.

h. Transmission Gate Logic

Transmission gate logic uses combinations of

transmission gates to build logical functions. A CMOS

transmission gate is a parallel connection of a p-type tran-

sistor and an n-type transistor. The gate of the n-type

transistor is driven by the control signal and the gate of

the p-type transistor is driven by the complement of the

control signal. The transmission gate is like an electronic

relay that conducts when the control signal is a logic one

and does not conduct when the control signal is a logic

zero. Many logical functions may be efficiently implemented
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using transmission gate logic. An implementation of an

exclusive or (XOR) gate requires only two transmission

gates. Some logical functions are accomplished more effi-

ciently using other structures like static CMOS

complementary logic. An example of a transmission gate

logic gate is in Figure 5.7. The output of this gate is the

function (NOT ((A AND B) OR C)). This logic function is

realized using four transmission gates. Another representa-

tion of the same gate using discrete transistors is in Fig-

ure 5.8. An n-type transistor transmits a strong zero and a

A C

- out

A

oC

Figure 5.7 Transmission Gate Logic
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weak one and a p-type transistor transmits a strong one and

a weak zero. Transmission gates for constant inputs require

only the transistors that have strong transmission charac-

teristics for the constant. Thus, the n-type transistors

associated with constant one inputs and the p-type transis-

tors associated with constant zero inputs are not required.

The circuit in Figure 5.8 may be reduced to the circuit in

Figure 5.9 by eliminating the transistors with weak trans-

mission characteristics for constant inputs. For this sam-

ple circuit, the transmission gate logic gate uses the same

number of transistors as the static CMOS complementary logic
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circuit. The p-type transistors in the static CMOS version

may be replaced by a single p-type precharge transistor for

dynamic logic. A static version of the gate using a single

p-type pull up transistor that is driven by an inverter con-

nected to the output is another variant of this circuit.

The size ratios of the transistors are critical in the ver-

sion of the circuit with a pull up transistor and inverter.

The static variations of transmission gate logic could be

used to construct a Mealy FSM. The dynamic variation could

not be used to construct a Mealy FSM. Basic logic functions
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of the full complementary form of transmission gate logic

are easily cascaded or connected to form more complex logic

functions in a hierarchical design while the other forms of

transmission gate logic are not easily cascaded. The com-

plementary transmission gate logic can satisfy controller

requirements while the dynamic transmission gate logic can-

not satisfy the requirements.

i. Acceptable Structures

The structures that are capable of satisfying

the controller requirements are static CMOS complementary

logic, pseudo-nMOS logic, the static version of cascade

voltage switch logic, and the static versions of

transmission gate logic. These are all structures that can

be used to construct Mealy FSMs.

2. Structural Goals Analysis

The logic structures that remain after requirements

analysis are next examined to determine how closely each

structure conforms to the controller goals. The structure

that is nearest to the controller goals is selected for im-

plementation of the controller.

a. Static CMOS Complementary Logic

The goals that are closely satisfied by static

CMOS complementary logic are high speed, low power, and sim-

ple interconnection. High speed is obtained by active pull

up and pull down structures. Low power results from all

transistors being operated in the saturation or cutoff
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modes. Simple interconnection is achieved since

complementary signals are not required. The goal that is

not closely satisfied by static CMOS complementary logic is

size. The medium size of static CMOS complementary logic is

the result of the dual pull up and pull down structures.

b. Pseudo-nMOS Logic

The goals that are closely satisfied by pseudo-

nMOS logic are size and simple interconnection. The small

size is the result of the single p-type transistor for the

pull up of each gate. Simple interconnection is achieved

since complementary signals are not required. The goals

that are not satisfied by pseudo-nMOS logic are low power

and high speed. The pull up structure that is active when

the pull down structure is in saturation causes high power.

For proper operation, the pull up transistors must be weak

compared to the pull down transistors. This results in slow

rise times for the outputs of gates. The slow rise times

reduce the speed of the circuit.

c. Static Cascade Voltage Switch Logic

The only goal satisfied by static cascade volt-

age switch logic is low power. Even the low power is not as

good as that obtained using static CMOS complementary logic

and complementary transmission gate logic. The transistors

are in the active mode during the contention period that is

part of switching. The goals that are not satisfied by

static cascade voltage switch logic are small size, high
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speed, and ease of interconnection. Cascade voltage switch

logic circuits use more transistors than static CMOS

complementary logic circuits. The speed of cascade voltage

switch logic is reduced by the contention period that is

part of switching. Cascade voltage switch logic circuits

require complementary inputs that result in more complex in-

terconnections.

d. Complementary Transmission Gate Logic

The goals that are closely satisfied by comple-

mentary transmission gate logic are small size, low power,

and high speed. The size of complementary transmission gate

logic circuits ranges from the same size as static CMOS

complementary logic to smaller than pseudo-nMOS depending on

the circuit logic function. The power consumption is almost

as low as static CMOS complementary logic and the speed is

almost as fast. The slightly slower speed and slightly

higher power are the result of more capacitance in the in-

creased number of connections between the pull up and pull

down regions and the greater number of separate source and

drain regions. In static CMOS complementary logic, transis-

tors of the same type that are connected in series may have

their common source and drain nodes merged together and

transistors connected in parallel may merge their sources or

drains. This significantly reduces the total node

capacitance. It is very difficult to merge sources or

drains in complementary transmission gate logic circuits.
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The goal that is not supported by complementary transmission

gate logic is simple interconnection. Complementary

transmission gate logic circuits require complementary in-

puts that result in more complex interconnections.

3. Structure Selection

The structure that satisfies all requirements and

comes closest to satisfying all goals is static CMOS

complementary logic. This structure will be used to imple-

ment the controller.

B. LOGIC ORGANIZATION TRADE-OFF STUDIES

There are two organizational design decisions that yield

four possible organizations for the controller. The first

design decision is whether or not to use data path

organelles with similar functions to the organelles used in

the nMOS version of MSC. The second design decision is

whether to use standard cells or a microprogram read only

memory (ROM) for the MSC FSM combinational logic.

Programmable logic arrays (PLAs) and Weinberger arrays are

rejected since they cannot be easily implemented using the

static CMOS complementary logic structure. These arrays

generate complex logical functions by wired logic connec-

tions of single pull down transistors. This wired logic

works with dynamic CMOS logic and pseudo-nMOS logic. Wired

logic does not work with static CMOS complementary logic.
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PLAs and Weinberger arrays are normally constructed using

dynamic CMOS logic or pseudo-nMOS logic.

1. Data Path Units

The data path units used in the current nMOS MSC

controller include register, organelle, bit, and internal

port units2. As discussed in Paragraph III.D.10.a, each

process in the design specification has a sequencer in the

data path. The data path sequencer contains all of the ele-

ments of the MSC FSM shown in Figure 2.9 except the

combinational logic. The combinational logic for the nMOS

MSC FSM is in a Weinberger array.

a. Sequencer Types

There are three types of sequencers: counter-

stack, counter-no-stack, and no-counter-no-stack.

(1) No-Counter-No-Stack. The no-counter-no-

stack sequencer is the simplest sequencer. This type of

sequencer is used for processes that use explicit go state-

ments for all state transitions. Figure 5.10 is a block

diagram of a no-counter-no-stack sequencer for the code

fragment in Section III.D.l0.a(l). It is constructed from a

.3register unit, an internal port unit, and a bit unit

There is a control line from the combinational logic to the

2The organization and function of units is discussed in
Paragraph II.A.l and the functions used to layout the units
and data path are discussed in Paragraph III.D.13.

3For a discussion of the internal structure of units,
see Section II.A.1.
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Figure 5.10 No-Counter-No-Stack Sequencer

sequencer for every input to every unit to select

multiplexer inputs and an additional control line to the

register unit to enable loading the register. The register

unit contains a register that stores the current state num-

ber and a multiplexer that selects the source of the next

state number. The constant (hardwired) zero input to the

register unit is selected when the reset signal is high.

The internal port unit is used to generate the go state num-

bers that are stored in state number memory. The go state

number inputs to the internal port unit are hardwired con-

stant values. Each state that can be the result of an ex-

plicit go state transition has a constant input to the

internal port unit. Using the internal port, each single

bit control line from the control logic array selects one

integer state number that has as many bits as the data path
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word size. The bit unit is used to extract groups of bits

from the present state number that is stored in the register

unit. This extraction converts word sized data from the

data path into bit sized data for the combinational logic.

The bits are used in the combinational logic to determine

what control signals to apply to the register and internal

port units. Only the bits that are required to uniquely

represent all state numbers in the process are extracted.

For example, if the data path word size is eight bits and a

process only has two states, the least significant bit (LSB)

of the output of the register unit will be extracted by the

bit unit. This one bit can uniquely identify all of the

valid state numbers. The seven most significant bits of the

register and internal port units are not used by the

controller.

(2) Counter-No-Stack. The counter-no-stack

sequencer is used for processes that do not use explicit go

statements for all state transitions. Figure 5.11 is a

block diagram of a counter-no-stack sequencer for the code

fragment in Section III.D.10.a(2). The counter-no-stack

sequencer contains an organelle unit and all of the units in

the no-counter-no-stack sequencer. The organelle unit

performs the increment (1+) function. The input to the

organelle unit is connected to the register unit output and

the output of the organelle unit is connected to one of the

inputs to the register unit. An additional internal signal
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Figure 5.11 Counter-No-Stack Sequencer

named sequencer-procname-go4 is used inside the combina-

tional logic to determine whether to select the internal

port unit or the organelle unit input to the register unit.

The input selection is controlled by the multiplexer inside

the register unit.

(3) Counter-Stack. The counter-stack sequencer

is used for processes that contain call and return

statements. Figure 5.12 is a block diagram of a counter-

stack sequencer for the code fragment in Section

4procname in this signal name is replaced at execution
time by the process name assigned in the design specifica-
tion.
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III. D. i0.a (3). The counter-stack sequencer contains addi-

tional register units and all of the units in the counter-

no-stack sequencer. The additional register units form a

last-in-first-out (LIFO) stack. Since the code fragment in

Section III.D.1O.a(3) specifies a stack depth of one, a sin-

gle register unit is added for the LIFO stack in Figure

5.12. The output of the organelle unit is pushed onto the

stack and the stack is popped to generate one of the inputs

to the register unit that contains the state number memory.

Internal signals named sequencer-procname-call and

Incrementer

I
0 nnLIFO Stack State Number

4 Port Register Register Bit
4--

Select Load 0 Select Load Bit 0

Combinational Logic

Figure 5.12 Counter-Stack Sequencer
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sequencer-procname-return5 are used inside the combinational

logic to select an input to the state number memory register

unit and to control pushing and popping the LIFO stack

formed by the additional register units.

b. Data Path Unit Advantages.

The data path units provide a useful abstraction

of the functions that are required to manipulate the state

number of an MSC FSM. Data path units use existing data

path software to generate a large part of the controller.

All units can be located in a single data path using the

current MSC floor plan or a second controller data path

could be generated using the existing layout-data-path

defsymbol in the data-path.l program6 . Generation of a sep-

arate controller data path requires modification of the .obj

file structure. The sequencer units would be removed from

the data-path section of the .obj file and placed in a new

control-data-path section. This would require modification

of the defstructs.l, prepass.l, and extract.l programs. The

existing layout-data-path defsymbol could be used to layout

the data-path and control-data-path symbols. A separate

controller data path does not have to use the same data path

word size as the arithmetic and logical data path. Having a

5Procname in these signal names is replaced at execution
time by the process name assigned in the design
specification.

6For a description of the layout-data-path defsymbol in
the data-path.l program see Paragraph III.D.13.
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separate controller data path saves space if the number of

bits required to represent the largest state number is less

than the data path word size. With a single data path, the

maximum number of states in a process is limited by the

largest number of integers that can be represented with the

data path word size. A separate controller data path allows

a process to have more states than the largest number of in-

tegers that can be represented with the data path word size.

c. Data Path Unit Alternatives

If data path units are not used, each of these

sequencer functions must be constructed from standard cells

or added to the combinational logic. Construction of these

functions from standard cells requires a large number of new

and modified functions in the MSC programs. Adding these

functions to the combinational logic would increase the com-

plexity of the functions used for generation of the

combinational logic. The alternative with the least risk

and minimum modification of existing software is to use data

path organelles.

2. Standard Cell or Microprogram ROM

Either standard cells or a microprogram ROM may be

used to implement the combinational logic of the MSC FSM.

a. Standard Cell

Use of standard cells requires that all

multiplexer and register control signals be expressed as

functions of the values of signals, ports, registers, and
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flags. Generation of these expressions requires significant

processing of the information in a design specification.

Efficient placement and routing for standard cells that im-

plement the control signal functions is a very difficult

programming problem. The size of the combinational logic, a

function of the number of standard cells and amount of in-

terconnection, is not a linear function of the design

specification complexity. Geometrical or exponential growth

in size is expected for more complex design specifications.

b. Microprogram ROM

A microprogram ROM has many characteristics that

make it an attractive choice for the combinational logic of

the MSC FSM. The structure is simple and regular. It can

be constructed entirely of modules that connect by abutting

or overlap. This significantly reduces routing problems.

The required contents of the ROM are easily derived from the

design specification. There is a one-to-one correspondence

of the states and sub-states in a design specification to

the rows in the ROM. Design specification sub-states are

the alternative outputs of the combinational logic section

that are the results of selecting different alternatives for

cond statements in the design specification. The vertical

dimension of the ROM is a linear function of the number of

states and sub-states in a design specification. There is a

row in the ROM for each state and sub-state. The horizontal

dimension of the ROM is a linear function of the number of
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control signals required by the data path, number of cond

statements in the design specification, and the number of

bits required to represent the largest state number. There

is a column in the ROM for each control signal required and

each cond statement. There is a column of row decoder cells

for each bit required to represent the largest state number.

The number of logic delays in the row decoders is a function

of the number of bits required to represent the maximum

state number. This is a logarithmic function of the number

of states in a process.

C. LOGIC STRUCTURE AND ORGANIZATION SELECTION

The selections for logic structure and organization of

the controller are static CMOS complementary logic for the

logic structure and microprogram ROM for the controller

organization. The speed, size, low power, and simple inter-

connection of static CMOS complementary logic are the fea-

tures leading to its selection. The simple regular

structure, simplified interconnection, high level of corre-

spondence to the design specification, and orderly growth of

the microprogram ROM are the features leading to its selec-

tion. A summary of the evaluations of each of the logic

structure and organization options for the controller is

listed on the next page.

89



Logic Structures

Static CMOS Complementary Logic

* Can satisfy all controller requirements

* High speed

* Medium size

* Small static power consumption

* Simple interconnection

Pseudo-nMOS Logic

* Can satisfy all controller requirements

* Medium speed

* Small size

* Large static power consumption

* Simple interconnection

Dynamic CMOS Logic

* Cannot use in Mealy FSM

Clocked CMOS Logic

* Cannot use in Mealy FSM

CMOS Domino Logic

* Cannot use in Mealy FSM

Cascade Voltage Switch Logic

* Static form can satisfy all controller

requirements

* Medium speed

* Large size

* Low power

* Complex interconnections
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Modified Domino Logic

* Cannot use in Mealy FSM

Transmission Gate Logic

* Static form can satisfy all controller

requirements

* High speed

* Small size

* Low power

* Complex interconnections

Organizations

Data Path Units

* Useful functional abstraction

* Utilize existing software

Standard Cell Combinational Logic

* Complex program for placement and routing

* Geometrical or exponential growth

Microprogram ROM Combinational Logic

* Simple regular structure

* Simple program for ROM construction

* Linear or logarithmic growth
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VI. CONTROLLER DESIGN

The technology independent part of the design process

for the MSC microprogram ROM controller involves partition-

ing controller functional requirements into groups, allocat-

ing groups of requirements to units, establishing floor

plans to describe the physical relationship of the units,

dividing the units into cells, and specifying the functions

performed by each cell. No internal circuitry is specified

in the technology independent design. The technology depen-

dent part of the design process involves specifying the in-

ternal signal conventions and circuitry of each cell in the

design.

A. FUNCTIONAL REQUIREMENTS PARTITIONS

The MSC microprogram ROM controller must include all

functions required to implement MSC finite state machines

whose structure is shown in Figure 2.9. The controller must

be able to store a current state number. This storage must

be clocked so that the current state number changes during

state transition and remains constant at all other times.

There must be a facility for selection of the source of the

next state number to be loaded into storage. There must be

a capability to generate next state numbers for go and call

statements in the design specification. There must be a

FILO stack for storage of return state numbers. There must
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be an incrementer to generate a next sequential state num-

ber. There must be a combinational logic section that

generates control signals for the data path and the other

sections of the controller. The outputs of this

combinational logic section must be functions of the current

state number and signals from the data path. All require-

ments that are satisfied by the control logic array in the

nMOS version of MSC form one group of requirements and the

requirements satisfied by data path units in the nMOS ver-

sion of MSC form the second group. "he first group contains

the combinational logic requirements and the second group

contains all remaining requirements.

B. UNIT IDENTIFICATION

The partitioned controller functional requirements are

allocated to units that may be located in the data path or

microprogram ROM.

1. Data Path Units

There are five controller units located in the data

path: the process state number register, the next state

number internal port, the bit, the FILO stack registers and

the increment organelle units. These units form sequencers

as described in Sections III.D.10.a and V.B.I. All of these

units are located in the single data path of the current

nMOS MSC. In future versions of MSC, they may be located in

the same data path or in a separate controller data path.
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2. MicroDrogram ROM Units

The microprogram ROM must produce outputs that are

functions of test signals from the data path or pads and the

current state number stored in the process state number reg-

ister data path unit. Three units support this processing:

the ROM array unit, the row decoder unit, and the

conditional unit. Additional buffer units are added for ef-

ficiency. The configuration of these units is shown in Fig-

ure 6.1. All these units are located in the microprogram

ROM section of the layout.

a. ROM Array

The ROM array unit contains the microprogram

code for the controller. The array is organized in horizon-

tal rows of words and vertical columns of bits. Each row of

the ROM array is one word of memory that is associated with

one state or substate of a process in the design specifica-

tion. Each column of the ROM array generates a one bit

signal that is used internally by the microprogram ROM, con-

nected to data or control lines for pads, or connected to

control lines for the data path.

b. Row Decoder

The row decoder unit selects a row in the ROM

array that is associated with a state in a process defined

in the design specification. One row is selected for each

process based on the current state number stored in the pro-

cess state number register associated with the process.
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Figure 6.1 Microprogram ROM Units

There is a row decoder unit for each process in the design

specification.

c. Conditional

The conditional unit selects a row in the ROM

array based on signals from the data path or pads. There is

a conditional unit for each cond statement in the design

specification. The conditional unit has an input for each

alternative in the cond statement in the design specifica-

tion. The inputs to the conditional unit are connected to

test lines from the data path or pads. The test lines may
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have logical one or zero signals based on conditions in the

data path. No more than one row in the ROM array will be

selected by each conditional unit. Each conditional unit is

enabled by a unique one bit column of the ROM array. If the

bit column for the conditional unit is a logic zero, the

conditional unit will not select any row in the ROM array.

If the bit column for the conditional unit is a logic one,

then the first row in the ROM array that is associated with

a logic one input to the conditional unit will be selected.

If the last alternative in the cond statement in the design

specification is a default true (t) and all of the inputs to

the conditional unit are logic zero, the last row in the ROM

array associated with the conditional unit will be selected.

d. Buffer

Buffer units are used on the inputs to the row

decoder units, between the row decoder units and the ROM ar-

ray, and between the conditional units and the ROM array.

The buffers convert single input signals into complementary

signals and may provide increased drive current.

C. FLOOR PLAN

Two floor plans are established for the microprogram ROM

controller. The first floor plan is for the organization of

the complete controller and the second is for the internal

floor plan of the microprogram ROM.
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1. Controller Floor Plan

There are several floor plans that are available for

the microprograr, ROM controller. The first floor plan,

shown in Figure 6.2, is similar to the current nMOS MSC

floor plan with the control logic array replaced by the mi-

croprogram ROM. The data path units for the sequencers of

the controller are located in the common data path. The

data path is located above the microprogram ROM. Alterna-

tive floor plans, shown in Figures 6.3 and 6.4, use a

separate control data path. The separate control data path

may be located to the left of the microprogram ROM or below

the microprogram ROM. The arithmetic and logical data path

is still located above the microprogram ROM. Any one of

these floor plans is suitable for the microprogram ROM con-

troller. The separate data paths can be generated by

Data
Path

PathFlags

Microprogram
ROM

Figure 6.2 Controller Floor Plan
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2. Micro~roaram ROM Floor Plan

The internal floor plan for the microprogram ROM is

shown in Figure 6.5. The ROM array is located on the right

of the microprogram ROM and individual bit signals may be

connected to the top or bottom of each bit column. The rows

for the first processes are located at the top of the ROM

array followed by the rows of the second process. The rows

of the last process are followed by the rows of the first

conditional group. The rows of the first conditional group

are followed by the rows of the next conditional group. The

row for the first state (state number = 0) is at the top of

the rows for a process and the row for the last state is at

the bottom of the rows for a process. The row for the first

alternative of a conditional group is at the top of the rows

for the conditional group and the row for the last

Decoder Connections

Decoder Buffers Bit Connections

Row
Decoders

Row ROM
Buffers Array

Test
Signal Conditionals

Connections

Bit Connections

Figure 6.5 Microprogram ROM Floor Plan
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alternative of the conditional group is at the bottom of the

rows for the conditional group. Row decoders for all pro-

cesses are located at the top left of the microprogram ROM.

Conditional units are located at t'ie bottom left of the

microprogram ROM. Connections for the test signals for the

conditional units are made on the left of the microprogram

ROM. Buffer units are located between the row decoders and

ROM array, between the conditionals and the ROM array, and

above the row decoders. Connections to the buffer units for

the row decoders are made on the top or left of the micro-

program ROM. All internal connections in the microprogram

ROM unit are made by cell overlap or abutment. There is no

internal routing in the microprogram ROM.

D. CELL LOGIC FUNCTIONS

In this section, the microprogram ROM units are divided

into cells and the logic function of each cell is deter-

mined. This section contains technology independent func-

tional descriptions. The actual circuits contained in these

cells for the SCMOS technology are presented in Section

VI.E.

1. ROM Array Cells

The ROM array is constructed from three basic cells

that generate a logic one, a logic zero, or a high impedance

on the vertical bit line. The cells are named ROMI, ROMO,

and ROMnull. The configurations of the cells and the way
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they join to form rows are shown in Figure 6.6. In all of

the cell figures, cell placement is controlled by the left,

right, top, and bottom (L R T B) alignment points. Nor-

mally, a left alignment point matches a right alignment

Vdd Bit Gnd

Sel Sel ROMi
< > RoM0

ROMnull
Sel Sel

> ' > Alignment
Vdd Bit Gnd Points

Vdd Bit Gnd Bit Vdd Bit Gnd Bit Vdd

Sel Sel

L Cell RXR Cell XL Cell R)R Cell L>

Sel Sel

Vdd Bit Gnd Bit Vdd Bit Gnd Bit Vdd

Row of Four Cells

Figure 6.6 ROM Array Cells
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point in an adjacent cell and a top alignment point matches

a bottom alignment point. The ROM array cells are the ex-

ception to this convention. Since alternate columns of

cells in the ROM array are mirrored about the vertical axis,

right alignment points are aligned with right alignment

points and left alignment points are aligned with left

alignment points. The bottom part of Figure 6.6 shows four

ROM array cells that have been joined to form a row. Since

the alignment points are inside the cells, there is a lot of

overlap. The arrows outside the cell indicate possible data

or power flow directions. If an arrow outside the cell

matches a alignment point inside the cell, then the align-

ment point may used for connections outside the microprogram

ROM. All connections inside the microprogram ROM are per-

formed by cell abutment or overlap.

a. ROMl Cell

The ROMI cell generates a logic one on the ver-

tical bit line when it receives row selection; when it is

not selected, the cell produces a high impedance on the bit

line. The cell passes the bit line, power, and ground ver-

tically and passes row selection horizontally. The cell has

left and right alignment points. Alternate columns are mir-

rored about the vertical axis to permit running power and

ground along the left and right edges. The ROMI cell has

signal alignment points for power, ground, and the bit line

on the top and bottom of the cell.
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b. ROMO Cell

The ROMO cell generates a logic zero on the ver-

tical bit line when it receives row selection; when it is

not selected, the cell produces a high impedance on the bit

line. The cell passes the bit line, power, and ground ver-

tically and passes row selection horizontally. The cell has

left and right alignment points. Alternate columns are mir-

rored about the vertical axis to permit running power and

ground along the left and right edges. The ROMO cell has

signal alignment points for power, ground, and the bit line

on the top and bottom of the cell.

c. ROMnull Cell

The ROMnull cell has no connection between the

signal on the vertical bit line and row selection. The cell

passes the bit line, power, and ground vertically and passes

row selection horizontally. The cell has left and right

alignment points. Alternate columns are mirrored about the

vertical axis to permit running power and ground along the

left and right edges. The ROMnull cell has signal alignment

points for power, ground, and the bit line on the top and

bottom of the cell.

2. Row Decoder Cells

The row decoder cells select a single row of the

microprogram ROM based on a binary state number. The row

decoder cells are DecodeLSB, DecodeEvenO, DecodeEvenl,

DecodeOddO, DecodeOddl, EvenInverter, OddInverter,
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EvenConnect, OddConnect, and Two-State. The configuration

of the cells that form a row decoder for a sixteen state

process is in Figure 6.7. A cell is not required below the

bottom DecodeEvenl cell in the Bit 2 column. This De-

codeEvenl cell drives both the DecodeOddO and DecodeOddl

cells at the bottom of the Bit 1 column.

a. DecodeLSB Cell

The DecodeLSB cell decodes the least significant

bit (LSB) of the binary state number. This cell is shown in

Figure 6.8. This cell controls two rows of the ROM array.

This arrangement allows the size of the DecodeLSB cell to

match the small vertical dimension of the ROM array cells.

If the DecodeLSB receives an enable signal from the cell on

its left, it selects one of the two ROM array rows. If the

LSB is zero, the top row is selected. If the LSB is one,

the bottom row is selected. The cell passes the LSB, the

complement of the LSB, power, and ground vertically. The

cell receives an enable signal on the left and generates two

row selections on the right. The cell has left and right

alignment points. The right alignment point coincides with

the left alignment point of the top RowBuffer on its right.

b. DecodeEvenO and DecodeEvenl Cells

The DecodeEvenO and DecodeEvenl cells decode

even bits of the binary state number. These cells are shown

in Figure 6.9. If the DecodeEvenO cell receives an enable

signal from the cell on its left and the even bit of the
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Figure 6.7 Row Decoder

binary state number associated with it is zero, it enables

the cell on its right. If the DecodeEveni cell receives an
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Figure 6.8 DecodeLSB Cell

enable signal from the DecodeEvenO cell above it and the

even bit of the binary state number associated with it is

one, it enables the cell on its right. Both cells pass the

even bit of the binary state number, the complement of the

even bit of the binary state number, power, and ground ver-

tically. The DecodeEvenO cell receives an enable signal on

the left and generates an enable on the right. The De-

codeEvenO also transmits the enable signal it receives on

the left to the DecodeEvenl cell below it. The DecodeEvenl

cell receives an enable signal from the DecodeEvenO cell

above it and generates an enable on the right. If the cells

are in the left column of the row decoder, the enable for

the two cells may be received from above the DecodeEveno
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Figure 6.9 DecodeEvenO and DecodeEveni Cells

cell or below the DecodeEveni cell. The cells have left,

right, and top alignment points.
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C. DecodeOddO and DecodeOddi Cells

The DecodeOddO and DecodeOddl cells decode odd

bits of the binary state number. These cells are shown in

Figure 6.10. If the Decodeoddo cell receives an enable sig-

nal from the cell on its left and the odd bit of the binary

state number associated with it is zero, it enables the cell

on its right. If the DecodeOddl cell receives an enable

signal from the DecodeOddO cell above it and the odd bit of

the binary state number associated with it is one, it en-

ables the cell on its right. Both cells pass the odd bit of

the binary state number, the complement of the odd bit of

the binary state number, power, and ground vertically. The

DecodeOddO cell receives an enable signal on the left and

generates an enable on the right. The DecodeOddO also

transmits the enable signal it receives on the left to the

DecodeOddl cell below it. The DecodeOddl cell receives an

enable signal from the DecodeOddO cell above it and gener-

ates an enable on the right. If the cells are for the bit

that is one less than the most significant bit (MSB), the

enable for the two cells may be received from the cell above

the DecodeOddO cell or below the DecodeOddl cell. The cells

have left, right, and top alignment points.

d. EvenInverter and OddInverter Cells

The EvenInverter and OddInverter cells are used

to connect the most significant bit (MSB) to the row de-

coders. These cells are shown in Figure 6.11. The
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Figure 6.10 DecodeOddO0 and DecodeOddi Cells

Evenlnverter has one set of DecodeEveno and DecodeEveni

cells above it and one set below it. The Oddlnverter has

one set of DecodeOddO and DecodeOddi cells above it and one
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Figure 6.11 Evenlnverter and Oddlnverter cells

set below it. If the number of states is not an even power

of two and less than 1. 5 times the largest power of two in

the number of states, the lower set of DecodeEven or
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DecodeOdd cells may be replaced by an inverter. The EvenIn-

verter receives an odd MSB on the left and the OddInverter

receives an even MSB on the left. If the MSB is zero, the

EvenInverter or OddInverter enables the cells above it. If

the MSB is one, the EvenInverter or OddInverter enables the

cells below it. The EvenInverter cell pass the even bit of

the binary state number, the complement of the even bit of

the binary state number, power, and ground vertically. The

OddInverter cell pass the odd bit of the binary state num-

ber, the complement of the odd bit of the binary state num-

ber, power, and ground vertically. Both cells have an

alignment point on the right and a signal alignment point

for the MSB on the left.

e. EvenConnect and OddConnect Cells

The EvenConnect cell is used to connect DecodeEvenO,

DecodeEvenl, and EvenInverter cells that do not abut verti-

cally. The OddConnect cell is used to connect DecodeOddO,

DecodeOddl, and OddInverter cells that do not abut verti-

cally. These cells are shown in Figure 6.12. Both cells

pass a bit of the binary state number, the complement of a

bit of the binary state number, cell enable, power, and

ground vertically. Both cells have alignment points on the

left and right.

f. Two-State Cell

The Two-State cell is used for row decoding for

processes that have only two states. This cell is shown in
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Figure 6.12 EvenConnect and OddConnect Cells

Figure 6.13. This cell controls two rows of the ROM array.

This arrangement allows the size of the Two-State cell to
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Figure 6.13 Two-State Cell

match the small vertical dimension of the ROM array cells.

The cell receives a single bit of the binary state number on

the left. If the single bit of the binary state number is

zero, it selects the top row of the two ROM array rows. If

the single bit of the binary state number is one, it selects

the bottom row of the two ROM array rows. The cell passes

power and ground vertically. The cell has an alignment

point on the right and a signal alignment for the single bit

of the binary state number on the left. The right alignment
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point coincides with the left alignment point of the top

RowBuffer on its right.

3. Conditional Cells

Conditional cells are arranged in groups with one

group for each cond statement in the design specification.

The configuration of the conditional cells for the following

segment of a design specification is shown in Figure 6.14:

(cond (testl (setq a b))
(t (setq a c)))

(cond (test2 (setq b c))
(test3 (setq b a))
(t (setq b a)))

If the conditional group is enabled, it may select one of

the rows in the ROM array. The row selected is determined

4Test Inputs

AdditionalTopCONDfeed CONDtap CONDnopass CONDnopass Cells

COND CONDbuffer ROMnull ROMnull ROMArrayfor

CONDtrue CONDbuffer ROMnull ROMnull First Conditional

Additional
CONDfeed CONDpass CONDtap CONDnopass Cells

COND CONDbuffer ROMnull ROMnull
ROM Array for

COND CONDbuffer ROMnull ROMnull Second
Conditional

CONDtrue CONDbuffer ROMnull ROMnull

Figure 6.14 Conditional Cells
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by the test signals connected to the conditional cells and

the configuration of the conditional cells. The condi-

tional cells are COND, CONDtrue, CONDfeed, topCONDfeed,

CONDtap, CONDpass, and CONDnopass.

a. COND Cell

The COND cell is used to select a row of the ROM

array based on enable and test inputs. This cell is shown

in Figure 6.15. The COND cell receives an enable from the

cell above it and a test signal on the left. If the COND

cell is enabled and the test signal is true, the COND cell

selects the cell on the right. If the COND cell is enabled

and the test signal is false, the COND cell enables the

cell below it. The cell passes power and ground vertically.

The cell has an alignment point on the right and a signal

alignment for the test signal on the left.

b. CONDtrue Cell

The CONDtrue cell is used to select a row of the

ROM array based on an enable input. This cell is shown in

Figure 6.15. The CONDtrue cell receives an enable from the

cell above it. If the CONDtrue cell is enabled, the

CONDtrue cell selects the cell on the right. The cell

passes power and ground vertically. The cell has an align-

ment point on the right.
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Figure 6.15 COND and CONDtrue Cells

c. CONDfeed and TopCONDfeed Cells

The CONDfeed and topCONDfeed cells form the top

of conditional cell groups. These cells are shown in Figure

6.16. They transmit an enable from the CONDtap or CONDpass

cell on the right to the COND cell below the topCONDfeed or

CONDfeed cell. The CONDfeed cell is used if there is an-

other conditional group above it and the topCONDfeed cell is
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Figure 6.16 TopCONDfeed and CONDfeed Cells

used if there is a row decoder above it. The cells pass

power and ground vertically. Both cells have alignment

points on the top, right, and bottom. The top and bottom

alignment points determine the spacing of the entire hori-

zontal row of the microprogram ROM.

d. CONDtap Cell

The CONDtap cell extracts a bit from the ROM ar-

ray and transmits it to the cell on the left. The value of
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the bit is controlled by ROMO and ROMI cells located in the

column above or below the CONDtap cell. This cell is shown

in Figure 6.17. The cell passes power, ground, and a bit

line vertically. The cell has right and left alignment

points.

e. CONDpass Cell

The CONDpass cell transmits a bit from the cell

on the right to a cell on the left. This cell is shown in

Figure 6.17. The cell passes power, ground, and a bit line

vertically. The cell has right and left alignment points.

f. CONDnopass Cells

The CONDnopass cell passes power, ground, and a

bit line vertically. This cell is shown in Figure 6.17.

The cell has right and left alignment points.

4. Buffer Cells

The buffer cells generate complementary outputs for

single inputs. The configurations of units using the buffer

cells are shown in Figures 6.7, 6.13, and 6.14. The drive

current on the output of the buffers may be much greater

than the input current of the buffer. The buffer cells are

RowBuffer, CONDbuffer, LSBbuffer, EvenBuffer, and OddBuffer.

a. RowBuffer Cell

The RowBuffer cell forms the buffer between the

row decoders and the ROM array. The cell is shown in Figure

6.18. The cell receives a select on the left and provides

complementary select outputs with greater drive current on
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the right. The cell passes power and ground vertically.

The cell has l'sft, right, top, and bottom alignment points.
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Figure 6.18 RowBuffer and CONDbuffer Cells

The top and bottom alignment points determine the spacing

of the entire horizontal row of the microprogram ROM.

b. CONDbuffer Cell

The CONDbuffer cell forms the buffer between the

conditional cells and the ROM array. The cell is shown in

Figure 6.18. The cell receives the complement of a select

on the left and provides complementary select outp-uts with
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greater drive current on the right. The cell passes power

and ground vertically. The cell has left, right, top, and

bottom alignment points. The top and bottom alignment

points determine the spacing of the entire horizontal row of

the microprogram ROM.

c. LSBbuffer Cell

The LSBbuffer cell provides complementary bit

signals for the DecodeLSB cells. This cell is shown in

Figure 6.19. The cell receives a least significant bit

(LSB) input on the right and produces complementary bit

outputs on the bottom. The cell passes power and ground

vertically. The cell has an alignment point on the bottom

and a signal alignment point on the right for the LSB.

GND Vdd GND Vdd

LSBBuffer

B

GND LSB LSB Vdd GND Vdd

Figure 6.19 LSBbuffer Cell
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d. EvenBuffer Cell

The EvenBuffer cell provides complementary bit

signals for the DecodeEvenO and DecodeEvenl cells. This

cell is shown in Figure 6.20. The cell receives an even bit

of the binary state number as input on the top and produces

complementary bit outputs on the bottom. The cell passes

power and ground vertically. The cell has an alignment

point on the bottom and a signal alignment point on the top

for the even bit.

GND Bt Vdd Vdd Bt GND

EvenBuffer OddBuffer

GND B Bit Vdd Vdd Br Bt GND

Figure 6.20 EvenBuffer and OddBuffer Cells

e. OddBuffer Cell

The OddBuffer cell provides complementary bit

signals for the DecodeOddO and DecodeOddl cells. This cell

is shown in Figure 6.20. The cell receives an odd bit of

the binary state number as input on the top and produces

complementary bit outputs on the bottom. The cell passes

power and ground vertically. The cell has an alignment
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point on the bottom and a signal alignment point on the top

for the odd bit.

E. CELL INTERNAL STRUCTURE

In this section, the internal structure of each cell in

the microprogram ROM is determined.

1. ROM Array Cells

The ROM array is constructed from three basic cells

that generate a logic one, a logic zero, or a high impedance

on the vertical bit line. The cells are named ROMl, ROMO,

and ROMnull.

a. ROMI Cell

The ROM1 cell has power, ground, and bit line

routed vertically in metall. The power and ground in metall

inside the ROM array connect to metal2 power and ground

buses outside the ROM array using metal2 contacts. Thus,

the bit lines are able to pass under the buses. The select

signal and the complement of the select signal are routed

horizontally in metal2. The ROMI cell contains a p-type

transistor connected between power and the signal line with

the gate connected to the complement of the select signal as

shown in Figure 6.21.

b. ROMO Cell

The ROMO cell has power, ground, and bit line

routed vertically in metall. The select signal and the com-

plement of the select signal are routed horizontally in
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Figure 6.21 ROM Array Cells
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metal2. The ROMO cell contains a n-type transistor con-

nected between ground and the signal line with the gate con-

nected to the select signal as shown in Figure 6.21.

c. ROMnull Cell

The ROMnull cell has power, ground, and bit line

routed vertically in metall. The select signal and the com-

plement of the select signal are routed horizontally in

metal2. The ROMnull cell is shown in Figure 6.21.

2. Row Decoder Cells

The row decoder cells select a single row of the

microprogram ROM based on a binary state number. The row

decoder cells are DecodeLSB, DecodeEvenO, DecodeEvenl,

DecodeOddO, DecodeOddl, EvenInverter, OddInverter,

EvenConnect, OddConnect, and Two-State. To simplify the

circuitry, the decoders for even bits use NOR gates and the

decoders for odd bits use NAND gates. The outputs of the

NOR gates are active high and the inputs to the NOR gates

are active low. The outputs of the NAND gates are active

low and the inputs to the NAND gates are active high. The

logic configuration of the decoders for the top two rows of

the row decoder shown in Figure 6.7 is illustrated in Figure

6.22. The input for the most significant bit comes from an

EvenInverter cell.

a. DecodeLSB, DecodeEveno, and DecodeEvenl Cells

The DecodeLSB cell contains two NOR gates and

the DecodeEvenO and DecodeEvenl cells contain single NOR
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Figure 6.22 Row Decode Logic

gates. The logic configurations of these cells is shown in

Figure 6.23. An SCMOS NOR gate is shown in Figure 6.24.

The enable signals for these cells are active low so an en-

able is a logic zero. The signal(s) output by the gates are

active high so a high is a logic one. In the DecodeLSB

cell, one of the inputs of each NOR gate is connected to the

line for the inverse enable signal. The other input of the

top gate is connected to the LSB line and the other input of

the bottom gate is connected to the line for the complement

of the LSB. One of the inputs of the NOR gate in the

DecodeEvenO and DecodeEvenl cells is connected to the enable

input. The other input of the NOR gate in the DecodeEveno

cell is connected to the bit line. The other input of the

NOR gate in the DecodeEvenl cell is connected to the line
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Figure 6.23 DecodeLSB, DecodeEvenO, and DecodeEvenl Logic

for the complement of the even bit. Power, ground, the bit

line, and the line for the complement of the bit are routed

vertically in metall. The enable and select signals are

routed in Metal2.

b. DecodeOddO and DecodeOddl Cells

The DecodeEvenO and DecodeEvenl cells contain

single NAND gates. The logic configurations of these cells

are shown in Figure 6.25. An SCMOS NAND gate is shown in
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Figure 6.25 DecodeOddO and DecodeOddl Logic

Figure 6.26. The enable signal for these cells is active

high so an enable is a logic one. The enable signal output
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by the cells is active low so an enable is a logic zero.

One of the inputs of the NAND gate in the DecodeOddo and De-

codeOddl cells is connected to the enable input. The other

input of the NAND gate in the DecodeOddO cell is connected

to the line for the complement of the odd bit line. The

other input of the NAND gate in the DecodeOddl cell is con-

nected to the odd bit line. Power, ground, the bit line,

and the line for the complement of the bit are routed verti-

cally in metall. The enable and select signals are routed

in Metal2.

129



c. EvenInverter and OddInverter Cells

The EvenInverter and OddInverter cells contain

single inverters. The logic configurations of these cells

are shown in Figure 6.27. An SCMOS inverter gate is shown

in Figure 6.28. The most significant bit (MSB) is routed to

the input of the inverter. The MSB is also routed to the

enable input of the top pair of DecodeEvenO and DecodeEvenl

cells for the EvenInverter. The MSB is also routed to the

enable input of the bottom pair of DecodeOddO and DecodeOddl

cells for the OddInverter. The output of the inverter is

routed to the enable input of the bottom pair of DecodeEveno

and DecodeEvenl cells for the EvenInverter. The output of

the inverter is routed to the enable input of the top pair

Upper Enable

Bit Lower Enable Eveninverter

Bit Upper Enable Oddlnverter

Lower Enable

Figure 6.27 EvenInverter and OddInverter Logic
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Figure 6.28 Inverter

of DecodeOddO and DecodeOddi cells for the OddInverter.

Power, ground, the bit line, and the line for the complement

of the bit are routed vertically in metall. The MSB and en-

able signals are routed in Metal2.

d. EvenConnect and OddConnect Cells

The EvenConnect and OddConnect cells contain

metal routing. Power, ground, the bit line, and the line

for the complement of the bit are routed vertically in

metall. The enable signals are routed vertically in Metal2.

e. Two-State Cell

The Two-State cell contains a single inverter.

The logic configuration of the cell is shown in Figure 6.29.

An SCMOS inverter gate is shown in Figure 6.28. The single

bit of the binary state number is routed to the input of the

inverter. The single bit of the binary state number is also
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Figure 6.29 Two-State Logic

routed to the select input of the bottom RowBuffer connected

to the Two-State cell. The output of the inverter is routed

to the select input of the top RowBuffer connected to the

Two-State cell. Power and ground are routed vertically in

metall. The single bit of the binary state number and se-

lect signals are routed in Metal2.

3. Conditional Cells

Conditional cells are arranged in groups with one

group for each cond statement in the design specification.

If the conditional group is enabled, it may select one of

the rows in the ROM array. The row selected is determined

by the test signals connected to the conditional cells and

the configuration of the conditional cells. The conditional

cells are COND, CONDtrue, CONDfeed, topCONDfeed, CONDtap,

CONDpass, and CONDnopass.

a. COND Cell

The COND cell contains an inverter, a NAND gate,

and a NOR gate. These gates are shown in Figures 6.24,
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6.26, and 6.28. The logical configuration of the COND cell

is shown in Figure 6.30. The enable input, test input, and

enable output are active high so a high is a logical one.

The select output is active low so a low is a logical one.

The enable input is connected to the input of the inverter

and one input of the NAND gate. The test input is connected

to one input of the NOR gate and one input of the NAND gate.

The output of the inverter is connected to one input of the

NOR gate. The output of the NAND gate is connected to the

select input of the CONDbuffer and the output of the NOR

gate is connected to the enable output. Power, ground, and

the enable signals are routed vertically in metall or

polysilicon. The test input and select signals are routed

in Metal2.

Enable In

Ts Select

Enable Out

Figure 6.30 COND Logic
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b. CONDtrue Cell

The CONDtrue cell contains a single inverter.

The logic configuration of this cell is shown in Figure

6.31. An SCMOS inverter gate is shown in Figure 6.9. The

enable input is routed to the input of the inverter. The

output of the inverter is routed to the select input of a

CONDbuffer. Power, ground, and the enable signal are routed

vertically in metall or polysilicon. The select signal is

routed in Metal2.

Enabl -lSelect

Figure 6.31 CONDtrue Logic

c. CONDfeed, TopCONDfeed, CONDtap, CONDpass, and

CONDnopass Cells

The CONDfeed, TopCONDfeed, CONDtap, CONDpass,

and CONDnopass cells route power, ground, and bit lines ver-

tically in metall and enable lines horizontally in metal2.

4. Buffer Cells

The buffer cells generate complementary outputs for

single inputs. The drive current on the output of the

buffers may be much greater than the input current of the

134



buffer. The buffer cells are RowBuffer, CONDbuffer,

LSBbuffer, EvenBuffer, and OddBuffer.

a. RowBuffer Cell

The RowBuffer cell contains two inverters that

are configured as superbuffers. The logic configuration of

this cell is shown in Figure 6.32. An SCMOS inverter gate

is shown in Figure 6.28. The select input is connected to

the input of the first inverter. The output of the first

inverter is connected to the input of the second inverter

and to the line for the complement of the row select signal.

The output of the second inverter is connected to the line

for the row select signal. Power and ground are routed ver-

tically in metall. The select signals are routed in Metal2.

b. CONDbuffer Cell

The CONDbuffer cell contains two inverters that

are configured as superbuffers. The logic configuration of

this cell is shown in Figure 6.32. An SCMOS inverter gate

is shown in Figure 6.28. The select input is connected to

the input of the first inverter. The output of the first

inverter is connected to the input of the second inverter

and to the line for the row select signal. The output of

the second inverter is connected to the line for the

complement of the row select signal. Power and ground are

routed vertically in metall. The select signals are routed

in Metal2.
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Select
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Figure 6.32 RowBuffer and CONDbuffer Logic

c. LSBbuffer Cell

The LSBbuffer cell contains two inverters that

are configured as superbuffers. The logic configuration of

this cell is shown in Figure 6.33. An SCMOS inverter gate

is shown in Figure 6.28. The LSB input is connected to the

input of the first inverter. The output of the first

inverter is connected to the input of the second inverter

and to the line for the complement of the LSB signal. The

output of the second inverter is connected to the line for
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LSB LSB

LSB

Figure 6.33 LSBbuffer Logic

the LSB signal. Power, ground, and the output signals are

routed vertically in metall. The LSB input signal is routed

in Metal2.

d. EvenBuffer and OddBuffer Cells

The EvenBuffer and OddBuffer cells contain sin-

gle inverters. The logic configuration of these cells is

shown in Figure 6.34. An SCMOS inverter gate is shown in

Figure 6.28. The bit input is routed to the input of the

inverter and to the bit line output. The output of the in-

verter is routed to the line for the complement of the bit.

Bit

Bit -- Bit

Figure 6.34 EvenBuffer and OddBuffer Logic
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Power, ground, and the bit input signal are routed in

metall. The output signals are routed in Metal2.

F. DESIGN VERIFICATION

The microprogram controller design satisfies the controller

requirements and conforms to the controller goals. The con-

trol signals generated by the controller are functions of

the test signals from the data path and the current state

numbers of the sequencers for the processes in the design

specification. This makes the controller a Mealy FSM. The

controller contains units that perform all of the functions

shown in Figure 2.9 for the MSC FSM. The growth of the size

of the controller is based on linear functions of parameters

of the design specification. The controller has a regular

structure. All cells in the microprogram ROM connect by

abutment or overlap. The circuitry inside the cells of the

microprogram ROM is simple for speed and compact size. All

cells contain alignment points for easy assembly by a

silicon compiler. The design verification reveals no dis-

crepancies between the design and the controller goals and

requirements.
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VII. CONTROLLER IMPLEMENTATION

Implementation of the microprogrammed controller for MSC

involves many interrelated tasks including: installation of

the MSC software on the ISI workstations, upgrade of MSC for

SCMOS technology and compatibility with the MagicI VLSI lay-

out editor, cell layout and test, addition of cells to MSC,

and extension of MSC to use the new cells. Addition of the

cells to MSC and extension of MSC for the new cells are not

completed in this thesis and will require further research.

A. MSC SOFTWARE INSTALLATION

Implementation of the microprogrammed controller for MSC

started with installation of the MacPitts software on a

clustered set of three ISI workstations. During the process

of installation, MacPitts was updated to use the Franz Lisp

interpreter Opus 38.78 and the Liszt compiler Opus 8.36 with

BSD 4.2 UNIX. During the installation, many errors were

corrected to produce error and warning free compilations.

Additional modifications were performed to permit use of the

Franz Lisp trace, stepping, and debugging programs. A log

of all actions taken during installation is contained in Ap-

pendix A.

iThe Magic VLSI layout editor is described in 1986 VLSI
Tools: Still More Works by the Original Artists (UCB/CSD
86/272, December 1985).
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B. MSC MAGIC AND SCMOS UPGRADE

The CIF output produced by the original MacPitts silicon

compiler was not compatible with the Magic VLSI layout edi-

tor. Since Magic is the primary VLSI layout editor used at

the Naval Postgraduate School, the silicon compiler had to

be modified to work with Magic. An additional benefit of

Magic compatibility is that the Magic program can extract

simulation information for use by the ESIM 2 event driven

switch level simulator and the CRYSTAL3 VLSI timing ana-

lyzer. The modifications to MacPitts to produce Magic CIF

are in Software Change Proposal SCP-l. SCP-l is superseded

by SCP-2 and is not included in this thesis.

The original version of MacPitts supports a single four

or five micron nMOS technology. By adding SCMOS layers to

the nMOS layers in MacPitts, a CIF file may be produced that

has both SCMOS and nMOS layers. However, this hybrid tech-

nology is not suitable for simulation or fabrication. Also,

use of this technique to add new technologies to the silicon

compiler would require a complete new silicon compiler pro-

gram for each technology. A more flexible solution is to

add command line options to the silicon compiler to select

2The ESIM event driven switch level VLSI simulator is
described in 1986 VLSI Tools: Still More Works by the Orig-
inal Artists (UCB/CSD 86/272, December 1985).

3The CRYSTAL VLSI timing analyzer is described in 1986
VLSI Tools: Still More Works by the Original Artists
(UCB/CSD 86/272, December 1985).
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the technology to be used for CIF output. The modifications

to MacPitts to add the required command line options is in

Software Change Proposal SCP-2. SCP-2 supersedes SCP-l and

is presented in Appendix 2. SCP-2 was approved and incorpo-

rated in the MSC baseline. The modifications in SCP-2

enable establishment of an integrated silicon compiler

development environment that includes the MSC silicon com-

piler including an internal functional simulator and Franz

Lisp stepping, tracing, and debugging programs, the Magic

VLSI layout editor, the ESIM event driven switch level simu-

lator, and the CRYSTAL VLSI timing analyzer.

C. CELL LAYOUT AND TEST

All cells described in Chapter VI have been laid out us-

ing the Magic VLSI layout editor. Each cell passes the in-

ternial Magic design rule checker. An extraction file for

each cell has been produced by using the Magic extract com-

mand. The extraction files have been converted into simula-

tion files by the ext2sim4 program. Each simulation file

was tested with the CRYSTAL static circuit check and ESIM

event driven switch level simulator to verify proper perfor-

mance. A test microprogram ROM named ROMtest.mag contains

all of the Chapter VI cells with all abutments, overlaps,

and orientations that are possible for the microprogram ROM

'4The ext2sim program is described in 1986 VLSI Tools:
Still More Works by the Original Artists (UCB/CSD 86/272,
December 1985).
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floor plan in Figure 6.5. The combinations of cells in

ROMtest.mag also pass the internal Magic design rule

checker. The simulation file ROMtest.sim is also produced

by using the Magic extract command to produce extraction

files for each cell in ROMtest.mag and merging these extrac-

tion files using the ext2sim program. ROMtest.sim passes

the CRYSTAL static electrical check and produces critical

paths that correspond to the intended operation of the cir-

cuit. Using the ESIM event driven switch level simulator,

ROMtest.sim produces correct outputs for all inputs. Proper

operation of each cell and combination of cells is assured

by this simulation.

D. ADDITION OF CELLS TO MSC

Defsymbols named layout-romO and layout-roml for the

ROMO and ROM1 cells are contained in the file controller.l.

This file has been loaded into a test version of MSC and

used to generate test layouts. The test layouts have been

loaded into Magic and pass the internal design rule checker.

Addition of the remainder of the cells to MSC is not com-

pleted in this thesis and will require further research.

The defsymbols were produced manually from the original

Magic layouts. This same procedure could be used to add the

remainder of the cells into MSC. Another method to load the

cells into MSC would be to write a program that generates a

defsymbol definition from a Magic or cif file. This process

142



has been used in other thesis research to enter cells into

MSC. The final result of either procedure is a large pro-

gram that is technology dependent. To add a new feature or

new technology to MSC using these procedures will require

major revision of the MSC program.

A better way to add new features, cells, or technologies

to MSC is to develop a mechanism in MSC to use cells that

are not part of the MSC program. One way to implement this

mechanism involves two new programs.

One program can be written in C or any other language to

convert a cif file into a form that is easily read by the

Franz Lisp interpreter. This program would produce a file

that is formatted as a lisp list. This file would contain

the bounding box of the cell, all required labels for the

cell, and all layout information for the cell. All measure-

ments would be converted to lambda units so that MSC can

scale them to the appropriate minimum feature size. The po-

sition of the cell would be translated to a home position.

The lisp formatted files would be stored in separate direc-

tories for each technology.

The second program would be an additional macro to MSC

named cifsymbol that is similar to the defsymbol macro.

Each cell used by the compiler would be defined by a cifsym-

bol definition. The cifsymbol contains the name of the cell

and the names of any required labels in the cell. The cif-

symbol does not contain any technology information. If the
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cifsymbol is not used, it is not expanded and the program

stays small. The first time the cifsymbol is called, the

macro is expanded. When the macro is expanded, a set of di-

rectories specified for the MSC technology is searched for

the lisp file corresponding to the cell name. When the cell

file is found, it is read and immediately output to the

--L5-symbol-list file. The cifsymbol call returns a symbol

that calls the cell. This symbol does not contain layout

information. All subsequent calls to the cifsymbol return

similar symbols and do no other processing.

This cifsymbol method will significantly reduce the size

of the MSC program, remove technology dependent structures

from the MSC program, and increase the efficiency of devel-

oping new cells or modifying existing cells that are part of

MSC. To replace an existing cell for MSC, a user would sim-

ply have a file in a directory earlier in the search path

with the same name as the cell being replaced.

E. MSC CONTROLLER EXTENSION

Adding the microprogrammed controller to MSC will re-

quire a modification of the object file structure and

changes to the extract.1 and control.l programs, and the ad-

dition of a single bit data-path. These extensions of MSC

are not completed in this thesis and will require further

research.
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1. Object File Modifications

The current nMOS object file structure has five ele-

ments for definitions, flags, data-path, control, and pins.

The control element contains specifications for a NOR gate

based Weinberger control logic array. The microprogrammed

controller object file control element should contain speci-

fications for a microprogram ROM. These specifications will

include the number of processes, the number of states in

each process, the number of cond statements, the number of

substates in each cond statement, the sources of test inputs

for each cond substate, and the ROM contents for each state

and substate.

2. Extract.l Modifications

The functions in the extract.1 program that produce

the object file control element must be modified to produce

the new structure described in Section VII.E.l.

3. Extraction Example

This section provides an example of the functions

that must be performed by the modified extract.l to derive

the information required for the new object file control el-

ement. This example is based on the following taxi cab me-

ter design specification presented in An Introduction to

MacPitts (MIT RVLSI-3, pp. 13-29, 10 February 1983).

(program taxi 8
(def 17 power)
(def 1 ground)
(def 2 phia)
(def 3 phib)
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(def 4 phic)
(def timer register)
(def fare register)
(def reset signal input 5)
(def time-on signal input 6)
(def hire signal input 7)
(def mile-mark signal input 8)
(def display port tri-state (9 10 11 12 13 14 15 16))
(def charge-time signal internal)
(def maximum-time constant 100)
(def base-fare constant 20)
(def cost-per-mile constant 50)
(def cost-per-time const 10)
(process time-clock 0
off

(cond (time-on (setq timer 0) (go on))
(t (go off)))

on
(cond (time-on (cond ((= timer maximum-time)

(setq timer 0)
(signal charge-time))

(go on))
(t (setq timer 0) (go off))))

(process fare-clock 0
for-hire

(cond (hire (setq fare base-fare) (go hired))
(t (go for-hire)))

hired
(par (cond ((not hire) (go for-hire))

((and charge-time mile-mark)
(setq fare (+ (+ fare cost-per-mile)

cost-per-time))
(go hired))

(charge-time
(setq fare (+ fare cost-per-time))
(go hired))
(mile-mark
(setq fare (+ fare cost-per-mile))
(go hired))
(t go hired)))

(setq display fare))))

There are two processes in the taxi program. Each

process will have its own row decoder. The first process is

named time-clock and it has two states named off and on.

The second process is named fare-clock and it has two states
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named for-hire and hired. The modified control.1 will use

Two-State cells for the row decoder for each process.

There are five cond statements in the program. The

modified control.1 program will layout each cond statement

as a cond group in accordance with the design in Section

VI.D. 3.

The first cond statement has two substates. The

test input for the first substate is the input signal time-

on. The second substate is always true so there is no in-

put. The modified control.1 will use the CONDtrue cell for

this substate.

The second cond statement has two substates. The

test input for the first substate is the input signal time-

on. The second substate is always true so there is no in-

put. The modified control.l will use the CONDtrue cell for

this substate.

The third cond statement has two substates. The

test input for the first substate is the test line from the

= organelle in the data-path. The second substate is always

true so there is no input. The modified control.l will use

the CONDtrue cell for this substate.

The fourth cond statement has two substates. The

test input for the first substate is the input signal hire.

The second substate is always true so there is no input.

The modified control.l will use the CONDtrue cell for this

substate.
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The fifth cond statement has five substates. The

test input for the first substate is the internal signal

from a not organelle in the single bit data-path. The input

to this organelle is the external signal hire. The test in-

put for the second substate is the internal signal from an

and organelle in the single bit data-path. The inputs to

this organelle are the internal signal charge-time and the

external signal mile-mark. The test input for the third

substate is the internal signal charge-time. The test input

for the fourth substate is the input signal mile-mark. The

fifth substate is always true so there is no input. The

modified control.l will use the CONDtrue cell for this

substate.

The following is the object file data-path element

generated by the current MSC for the taxi program:

((register sequencer-time-clock-state -1
(((constant 0)) ((internal 2))))

(port-internal sequencer-time-clock-next-state -2
(((constant 1)) ((constant 0))))

(bit (0) (((internal 1))))
(register timer -3 (((constant 0)) ((internal 4))))
(organelle = 0 (((internal 3) (constant 100))))
(organelle 11+1 -4 (((internal 3))))
(register sequencer-fare-clock-state -5

(((constant 0)) ((internal 6))))
(port-internal sequencer-fare-clock-next-state -6

(((constant 1)) ((constantO))))
(bit (0) (((internal 5))))
(port-output display (((internal 7))))
(register fare -7

(((constant 20)) ((internal 9)) ((internal 8))))
(organelle + -8

(((internal 7 (constant 50))
((internal 7) (constant 10))))

(organelle + -9 (((internal 8) (constant 10)))))
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Each element in this list corresponds to a unit in

the data-path. If the layout of the circuit is oriented so

that the data-path is at the top, the first element corre-

sponds to the left unit in the data-path. The data-path for

the taxi program has thirteen units. This list can be used

to determine the names and the order of the multiplexer con-

trol lines and test signal lines between the data path and

the controller. The multiplexer control lines will corre-

spond to columns in the microprogram ROM.

The input element in a unit specification determines

the input multiplexer configuration of that unit. The input

element is the fourth element in register, internal port,

and organelle unit specifications and the third element in

bit and output port unit specifications. The input element

is always a list. If the list has a single element, there

is only one set of inputs to the unit that are connected to

a degenerate multiplexer and there are no multiplexer con-

trol lines. If there is more than one element in the list,

the number of elements is the number of multiplexer control

lines. Each element of the list in the input element is a

list of inputs that are enabled when the control line for

this element is high. There are internal and constant in-

puts. An internal input comes from an internal bus. A con-

stant input is generated by connecting the inputs to the

multiplexer to power or ground.
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All units may have multiplexer control lines. Reg-

ister units have an enable control line that determines

whether or not the register contents are allowed to be up-

dated during state transition. Bit units have test lines

that are used to provide single bit outputs to the con-

troller. Organelle units may have test lines and carry in-

put lines depending on the function of the organelle. The

organelle unit test lines and carry lines may not be con-

nected to the controller.

The first unit in the data-path is a register for

sequencer-time-clock-state. This register contains the

state number for the time-clock process. The -1 for the

third element in the register specification states that the

output of the register is connected to internal bus 1. The

fourth element is a list that has two elements. This means

that there are two multiplexer control lines for this unit

named (mpx 1 1) and (mpx 1 2). The second element in the

multiplexer name is the unit number. The multiplexer con-

trol line (mpx 1 1) enables a constant input of 0 for the

unit and (mpx 1 2) enables an input from internal bus 2.

The left line is (mpx 1 2) and the right line is (mpx 1 1).

The (mpx 1 1) control line is connected to the external re-

set signal to force the contents of the register to 0. This

multiplexer selection must override any other multiplexer

selections. This would violate the requirement for true

multiplexers. A better solution is to use a register that
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has a reset input. This input would be connected to the re-

set input signal. To the right of the multiplexer control

lines is an enable control line for the register named

(control-line 1 1). When this line is high, it enables

loading of the register.

The second unit in the data-path is an internal port

for sequencer-time-clock-next-state. This port generates

the next state numbers for the time-clock process. The -2

for the third element in the internal port specification

states that the output of the internal port is connected to

internal bus 2. The fourth element is a list that has two

elements. This means that there are two multiplexer control

lines for this unit named (mpx 2 1) and (mpx 2 2). The sec-

ond element in the multiplexer name is the unit number. The

multiplexer control line (mpx 2 1) enables a constant input

of 1 for the unit and (mpx 2 2) enables a constant input of

0. The left line is (mpx 2 2) and the right line is (mpx 2

1). When (mpx 2 1) is high, the next state is on and when

(mpx 2 2) is high, the next state is off.

The third unit in the data-path is a bit unit. This

unit extracts bit 0 from its input word. The third element

is a list that has one elements. This means that this bitIunit has a single input source. As a result, there are no

multiplexer control lines for this unit. The input is con-

nected directly to internal bus 1. Since this unit is for a
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single bit, it has a single test line (test-line 3 1) that

returns the bit to the controller.

These first three units form a no-counter-no-stack

sequencer for the first process.

The fourth unit is a register for the timer. The

output of the register is connected to internal bus 1. The

register has two multiplexer control lines and an enable

control line named (mpx 4 1), (mpx 4 2), and (control-line 4

1).

The fifth unit is an = organelle unit. Since the

fourth element of the organelle specification is a list with

a single element that is a list of two elements, this unit

has two inputs with one signal for each input. The inputs

are connected to internal bus 3 and the constant 100. This

unit does not have any multiplexer control lines. The unit

has a single test line (test-line 5 1) that is connected to

the controller. This signal is high when the internal bus

3, the output of the timer register, is equal to 100.

The sixth unit is a 1+ organelle unit. This is an

incrementer that has internal bus 4 for output and internal

bus 3 for input. This incrementer unit has no multiplexer

control lines and a single test line (test-line 6 1). This

test line is high when there is a carry out of the most sig-

nificant bit of the incrementer. This test line is not con-

nected to the controller.
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Units seven, eight, and nine form a no-counter-no-

stack sequencer for the second process. Their configuration

is similar to units one, two, and three. The (mpx 7 1) mul-

tiplexer control line i. connected to the external reset

signal.

Unit ten is a port-output unit for the display out-

put port. The input of this unit is connected to internal

bus 7 and the output is connected to lines below the inter-

nal bus lines that bring the output of the unit to the left

of the data-path and from there to the pads. There are no

multiplexer control lines or test lines for this unit.

The eleventh unit is a register for the fare. The

output of the register is connected to internal bus 7. The

register has three multiplexer control lines and an enable

control lines named (mpx 11 1), (mpx 11 2), (mpx 11 3), and

(control-line 11 1).

The twelfth unit is a + organelle unit. This or-

ganelle unit contains a two input full adder. This unit has

two multiplexer control lines. The (mpx 12 1) control line

enables the internal bus 7 and constant 50 inputs to the

adder. The (mpx 12 2) control line enables the internal bus

7 and constant 10 inputs to the adder. The output of the

unit is connected to internal bus 8. The unit has a carry

out test line that is not connected to the controller.

The thirteenth unit is a + organelle unit. This or-

ganelle unit contains a two input full adder. This unit has
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a single set of inputs and no multiplexer control lines.

The adder inputs are connected to internal bus 8 and con-

stant 10 inputs. The output of the adder is connected to

internal bus 9. The unit has a carry out test line that is

not connected to the controller.

The columns in the microprogram ROM should be in the

same order as the multiplexer control, register enable, and

carry input lines from the controller to the data-path. Ad-

ditional columns are required for each cond enable and for

signals that are generated by the controller. A signal gen-

erated by the controller has the form (signal signal-name)

in the program specification. One design would have the

cond enable columns on the left of the ROM, the signals gen-

erated by the controller in the center of the ROM, and the

multiplexer control, register enable, and carry input lines

for the data-path on the right. Using this design, the 23

columns of the ROM from left to right would be:

cond enable 1
cond enable 2
cond enable 3
cond enable 4
cond enable 5
charge-time
(mpx 1 2)
(control-line 1 1)
(mpx 2 2)
(mpx 2 1)
(mpx 4 2)
(mpx 4 1)
(control-line 4 1)
(mpx 7 2)
(control-line 7 1)
(mpx 8 2)
(mpx 8 1)
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(mpx 11 3)
(mpx 11 2)
(mpx 11 1)
(control-line 11 1)
(mpx 12 2)
(mpx 12 1)

The rows of the ROM correspond to the states of the

processes and the substates of the conds. This produces the

following rows for the ROM from top to bottom:

process time-clock state off
process time-clock state on
process fare-clock state for-hire
process fare-clock state hired
cond 1 substate time-on
cond 1 substate t
cond 2 substate time-on
cond 2 substate t
cond 3 subsubstate (= timer maximum-time)
cond 3 subsubstate t
cond 4 substate hire
cond 4 substate t
cond 5 substate (not hire)
cond 5 substate (and charge-time mile-mark)
cond 5 substate charge-time
cond 5 substate mile-mark
cond 5 substate t

All of the multiplexer control, register enable, and

carry input lines for each unit are associated with a single

process. The time-clock process has control of the first,

second, and fourth units, the charge-time signal, and the

first three conds. The fare-clock process has control of

the seventh, eighth, eleventh, and twelfth units and the

last two conds. Each ROM column associated with signals

controlled by a process must be set to a 1 or a 0 in every

valid combination of states and substates of that process.
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This information can be used to derive the contents of the

microprogram ROM.

The top row of the ROM is assigned to the off state

of the time-clock process. In this state, the first cond is

enabled and the second and third conds are not enabled. The

charge-time signal is 0. The (mpx 1 2) and (control-line 1

1) are 1 to load the time clock state register from the in-

ternal port (second) unit. If a hyphen is used to represent

a null entry in the microprogram ROM, the top row of the ROM

is:

100--01l1- - ------------

The second row of the ROM is assigned to the on

state of the time-clock process. In this state, the first

cond is not enabled and the second cond is enabled. The

third cond is controlled by the second cond. The charge-

time signal is controlled by the third cond. The (mpx 1 2)

and (control-line 1 1) are 1 to load the time clock state

register from the internal port (second) unit. The second

row of the ROM is:

0 1 ---- -1 1- - ------------

The third row of the ROM is assigned to the for-hire

state of the fare-clock process. In this state, the fourth

cond is enabled and the fifth cond is not enabled. The (mpx

7 2) and (control-line 7 1) are 1 to load the fare clock
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state register (seventh unit) from the internal port

(eighth) unit. The third row of the ROM is:

--- 10 -------- 11---------

The fourth row of the ROM is assigned to the hired

state of the fare-clock process. In this state, the fifth

cond is enabled and the fourth cond is not enabled. The

(mpx 7 2) and (control-line 7 1) are 1 to load the fare

clock state register (seventh unit) from the internal port

(eighth) unit. The fourth row of the ROM is:

- 01 -i- - ----- 1 1------ - --

The fifth row of the ROM is assigned to the time-on

substate of the first cond. In this substate, the next

state internal port (second unit) is set to generate a 1 for

the on state so (mpx 2 1) is 1 and (mpx 2 2) is 0. The

timer register (fourth unit) is set to 0 so (mpx 4 1) is 1,

(mpx 4 2) is 0 and (control-line 4 1) is 1. The fifth row

of the ROM is:

-01011- - --------

The sixth row of the ROM is assigned to the t sub-

state of the first cond. In this substate, the next state

internal port (second unit) is set to generate a 0 for the

off state so (mpx 2 1) is 0 and (mpx 2 2) is 1. The timer

register (fourth unit) does not change so (control-line 4 1)

is 0. The sixth row of the ROM is:

-i0--0- - --------
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The seventh row of the ROM is assigned to the time-

on substate of the second cond. In this substate, the third

cond is enabled. The next state internal port (second unit)

is set to generate a 1 for the on state so (mpx 2 1) is 1

and (mpx 2 2) is 0. The timer register (fourth unit) is

loaded in all subsubstates of this substate so (control-line

4 1) is 1. The seventh row of the ROM is:

-- 01--i-----------

The eighth row of the ROM is assigned to the t sub-

state of the second cond. In this substate, the third cond

is not enabled. The next state internal port (second unit)

is set to generate a 1 for the on state so (mpx 2 1) is 1

and (mpx 2 2) is 0. The timer register (fourth unit) is

loaded to 0 so (mpx 4 1) is 1, (mpx 4 2) is 0, and (control-

line 4 1) is 1. The eighth row of the ROM is:

-- 0 01011- - --------

The same process can be used for the remainder of

the rows. The full microprogram ROM is shown in Figure 7.1.

4. Control.l Modifications

The functions in the control.l program must be modi-

fied to produce a microprogram ROM from the new object file

control element structure described in Section VII.E.l

5. Single Bit Data-Path

The current nMOS MSC performs all single bit pro-

cessing in the Weinberger control logic array. The library

program contains macros that convert all single bit
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1 0 0 -- 0 1 1 -- -- ---- ----- --- time-clock state off
o 1 - - - - 1 1-- -- ---- ----- --- time-clock state on
-- 1 0---- -- -- -- 1 1- -- ------ fare-clock state for-hire
- - - 0 1----- -- -- -- 1 1- -- ------ fare-clock state hired
--------- ----- ----- 0 1 0 1 1 -- -- ---- --- cond Itime-on
--------- ----- ----- 1 0- -0 -- -- --- ---- condi1t

1 - ----- 0 1 - - 1 -- -- ---- --- cond2time-on
-0- -- --- 0 10 11 -- -- ---- --- cond2 t
----------- -----1- - - 0 1 -- -- ---- ---- corid3(= timer maximum-time)
---------------0- -- -1 0- -- -- ----- -- cond 3t

--------- ----- ----- ------- 0 10 0 11 - - coid 4 hire
--------- ----- ----- ------- 1 0 -- - 0 -- cond4 t
--------- ----- ----- ------- 1 0 - - - 0 - - cond 5(not hire)
--------- ----- ----- ------- 0 1 0 1 0 1 0 1 cond 5(and charge-time mile-mark)
--------- ----- ----- ------- 0 1 1 0 0 1 1 0 cond 5charge-time
--------- ----- ----- ------- 0 1 1 0 0 1 0 1 cond 5mile-mark
--------- ----- ----- --- ---- 01- - - 0-- cond 5t

Figure 7.1 Taxi Microprogram ROM Design

functions into combinations of NOR functions that are

specified in the object file control element. These

functions cannot be accomplished by a microprogrammed

controller. A set of cells for single bit functions are

required and an area for single bit processing must be added

to the MSC floor plan.

F. IMPLEMENTATION STATUS

The cells specified in Chapter VI are laid out and

tested. A microprogrammed controller constructed from these

cells and using sequencers constructed from data path units

will be able to fulfill all MSC controller requirements
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stated in Section IV.B. Addition of the cells to MSC and

extension of MSC for the new cells are not completed in this

thesis and will require further research.
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VIII. CONTROLLER TESTING

After completion of the microprogrammed controller im-

plementation described in Chapter VII, the resulting silicon

compiler will require extensive testing. A series of bench-

mark design specifications will have to be generated that

test all types of controller configurations. These bench-

marks should include designs that have multiple processes,

nested cond statements, processes with many states, con-

troller generated signals, counter-stack sequencers,

counter-no-stack sequencers, and no-counter-no-stack se-

quencers. Each of the benchmarks should be exercised using

the MSC internal design interpreter and the simulated out-

puts produced by test inputs should be recorded. Each

benchmark design should then be output in Magic cif format.

The cif files should be loaded into Magic and verified using

the Magic internal design rule checker. Simulation files

should be prepared by extracting the designs using the Magic

extract command and converting the extract files to simula-

tion files with the ext2sim program. The circuits should be

checked with the CRYSTAL static electrical check command.

Each simulation file should be tested using the ESIM event

driver switch level simulator with the same test inputs as

were used with the MSC internal design interpreter tests.
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The ESIM simulated outputs should be the same as the MSC in-

ternal design interpreter outputs.
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IX. CONCLUSIONS

A. CONTROLLER DESIGN

A microprogrammed controller for the MSC silicon com-

piler has been designed and tested. The remaining steps to

fully implement the controller have also been described.

The design of the controller followed a complete development

process. Requirements for the controller were defined, al-

ternative technologies and organizations were analyzed, a

technology and organization were selected, and a design was

produced using the selected technology and organization.

Use of a well defined formal development process was very

beneficial to this thesis research.

B. MSC STRUCTURE

The current internal structure of the MSC programs is

very technology dependent. A major reorganization would im-

prove the addition of other technologit- to MSC. The li-

brary and organelles.l programs are not permanent parts of

the MSC compiler. They are loaded at run time. There

should be library and organelles.l programs that are unique

for each technology. All of the technology dependent func-

tions of MSC should be moved to these programs. The name of

the technology should be added to the beginning of each pro-

gram's name or they should be stored in different

1
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directories so that the only technology dependent functions

loaded into MSC at run time are those for the selected

technology.

C. ADDITIONAL RESEARCH

There are several topics for follow-on research that are

presented in this thesis. The most important is the devel-

opment of the cifsymbol macro described in Section VII.D.

This would provide a technology independent method for

adding cells to MSC. Other follow on research involves the

implementation and test of the microprogram controller de-

scribed in Section VII.E and Chapter VIII.
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APPENDIX A ISI INSTALLATION LOG

This file is a log of the procedures used to compile the
MacPitts Silicon Compiler on the ISI system at NPGS.

25 Feb 1987 J. Harmon and R. Limes loaded original source
files from the computer science VAX installa-
tion into the /usr/macpit directory.

25 Feb 1987 J. Harmon modified the c-routines.c program to
eliminate the multiple definition problem for
the global variable "ospeed". This problem was
the result of loading a C language object file
into Franz Lisp or Liszt with a global variable
which had the same name as one inside Lisp or
Liszt. MacPitts was written using an older
Opus of Franz that did not have a termcap in-
terface. The current Franz has termcap capa-
bility that includes the global variable
"ospeed" from the file tputs.o in libtermcap.a.
C-routines.c uses the curses package that in-
cludes a global variable "ospeed" in crtty.o
in libcurses.a. The fix was to include a local
definition of the functions in crtty.o in
libcurses.a. This fix replaces the previous
fix of changing the lib files that returned the
problem when Franz was recompiled or a new ver-
sion of the lib files was installed.

26 Feb 1987 J. Harmon modified lincoln.l to remove compila-
tion warnings that were caused by the upgrade
to the current opus of Franz Lisp and Liszt.
Also corrected errors that caused compilation
warnings in the original opus. Escaped all $
characters so there would not be any trouble if
the back-quote symbol is changed to $. Changed
remove to remove-parameter since remove is a
standard function in the current opus of Lisp.
Removed the path restriction on the cfasl of c-
routines.o so that a local version may be used.
Declared fixnum, list, predicate, thing, and
grade-predicate special for the whole program
so that they are special when the macros that
use them are evaluated. Removed the pp-form
function since it used a Lisp primitive $prpr
that is not in the current opus. The current
opus has its own pp-form. Removed profane
language from the err notice in tr-traceexit.

165



27 Feb 1987 J. Harmon added all of the changes written by
E. Malagon for L5. This included adding
messages to L5-err, adding SCMOS layers,
creating a hybrid nMOS/SCMOS technology, and
changing the CIF output from to use "19 4 "
extension for labels.

27 Feb 1987 J. Harmon compiled defstructs.l with no errors.
No modification required for defstructs.l.

27 Feb 1987 J. Harmon escaped all $ characters in front-
page.l.

27 Feb 1987 J. Harmon compiled general.l with no errors.
No modification required for general.l.

27 Feb 1987 J. Harmon escaped all $ characters in prepass.l
and changed (argv) to (argv -1) in those cases
where it is to return the number of command
line arguments. This is to conform with the
argv function in the current opus of Franz
Lisp.

27 Feb 1987 J. Harmon compiled extract.l with no errors.
No modification required for extract.l

27 Feb 1987 J. Harmon compiled frame.l with no errors. No
modification required for frame.l.

27 Feb 1987 J. Harmon compiled data-path.l with no errors.
No modification required for data-path.l.

27 Feb 1987 J. Harmon compiled control.l with no errors.
No modification required for control.l.

27 Feb 1987 J. Harmon compiled flags.l with no errors. No
modification required for flags.l.

27 Feb 1987 J. Harmon compiled padgen.l with no errors. No
modification required for padgen.l.

27 Feb 1987 J. Harmon ran padgen.l under Lisp to generate
pads.l. Pads.l does not compare with the
distribution pads.l. I will use the version
generated in this installation and not the
original version that may not be completely
compatible with the ISI installation.

27 Feb 1987 J. Harmon compiled pads.l with no errors. The
pads.l and pads.o files take up a lot of space!
Disk is up to 99% full.
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2 Mar 1987 The disk was cleaned up so that there now is
lots of disk space.

2 Mar 1987 J. Harmon compiled order.l with no errors. No
modification required for order.l.

2 Mar 1987 J. Harmon compiled general.l with no errors.
No modification required for general.l.

2 Mar 1987 J. Harmon changed the name of the function de-
fined in an .env file from environment to env.
The environment function is a built-in function
in the current opus of Franz Lisp. The env
function in the .env file is used to simulate
the environment outside the chip. If there is
any outside processing of chip outputs to pro-
duce chip inputs, this may be automatically
done by the env function. This processing is
enabled/disabled by the e command to the inter-
preter. The env function is defined by a defun
in the .env file and has an argument list of
(clocked? new-states word-length definitions)
where clocked? is a flag that is 't if the up-
date is a clock cycle update and 'f if the up-
date is a propagate update. New-states are the
current states for the simulator, word-length
is the data path word size, and definitions is
a list of design definitions extracted from the
design specification. The function env returns
a list of new-states. The port-state-value or
signal-state-value of the new-state is the
value produced by the environment for that in-
put. The port-state-driver or signal-state-
driver must be set to 'environment. If a new-
state is not returned that had been previously
returned by a call to env, the system will re-
turn control of the signal to the chip. An env
may not update a signal or port that is stable
and set by the chip. If the port-state-driver
or signal-state-driver for the old state is
'chip then the port-state-value or signal-
state-value must be 'unset for the env to up-
date the input port or signal.

2 Mar 1987 J. Harmon compiled organelles.l with no errors.
No modification required for organelles.l.

6 Mar 1987 J. Harmon replaced all # symbols with the word
"number" and appropriate hyphens in control.l,
data-path.1, defstructs.1, extract.1, frame.1,
front-page.1, general.1, interpret.1,
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lincoln.1, order.l, organelles.l, and Library.
The # symbol is used in the reader as the
vsplicing-macro character. The old version of
MacPitts removed the special use of this sym-
bol. The debugger and stepper do use this
symbol so this violation of standard syntax
interfered with the use of the debugger and
stepper.

10 Mar 1987 J. Harmon renamed function number-of-tracks in
control.1 to find-number-of-tracks to avoid
confusion with new variable named number-
tracks. Note: there is a local variable used
many times in organelles.l that is called
number-of-tracks and a function called
determine-number-of-tracks. These two
functions in control.l and organelles.l should
probably be combined and placed in general.l.

10 Mar 1987 J. Harmon replaced the name track-number in or-
ganelles.l with the name organelles-track-num-
ber to prevent conflict with variables now
named track-number in other sections of
MacPitts.

10 Mar 1987 J. Harmon replaced alpha form with mapcar form
in Library for macro and, macro nand, and macro
xor. Alpha expansion fo the old form did not
work.

10 Mar 1987 J. Harmon compiled taxi program with no errors.

11 Mar 1987 J. Harmon updated Makefile for installation on
ISI cluster workstations. Updated the install
routine to copy the new executable MacPitts
with Library and organelles.o to ISII and ISI2.

13 Mar 1987 J. Harmon updated all sources with comments IAW
Brooks ProgramminQ In Common Lisp. Added make
xref to the Makefile to automatically make and
print a cross reference. Added a Logfile to
the compilation steps in the Makefile to save
the compilation messages in one log. Updated
make clean in the Makefile to remove all unused
files from the /usr/macpit directory. Compiled
all sources without errors or warnings. In-
stalled new version. Generated cross refer-
ence. Cleaned up directory. Made all source
files read only. This established the initial
baseline of MacPitts on the ISI.
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APPENDIX B SOFTWARE CHANGE PROPOSAL SCP-2

SOFTWARE CHANGE/SOFTWARE ENHANCEMENT PROPOSAL

Based on DOD-STD-1679A(NAVY) DI-E-2117A

1. System/Project Name: MACPITTS

2. Date Prepared: 22 April 1987

3. SCP Number: 2

4. Title of SCP/SEP: Selectable Technology CIF Output

5. Originator: J. Harmon

6. Component(s) affected: L5.1 frame.l prepass.l
Makefile

7. Description of Problem/Need for SCP/SEP:

The current CIF output of MacPitts for 4 or 5
micron hybrid nMOS and SCMOS is not the same as the
CIF used by the Magic and cifp programs. The only
program that is compatible with the current CIF is
the cifplot program from the Berkeley CAD tools. A
MacPitts CIF layout is grossly distorted when loaded
into Magic. The names of sub-modules in the
MacPitts CIF are not recognized by Magic and
input/output signal labels are not attached to the
proper layers. Any designs with both nMOS and SCMOS
layers is not acceptable to Magic. A CIF file must
be able to be loaded into Magic to be extracted for
the Crystal, ESIM, and RSIM programs. The cifp
program used to plot CIF on the color plotter
connected to the ISI workstations does not accept
the format of the MacPitts CIF.

8. Description of Recommended SCP/SEP:

This change adds new command line options to
MacPitts named "magic", "nmos", "cmos", "scmos",
"hybrid", "3u", "2u", and "l.2u". If "magic" is
included in the command line, MacPitts will produce
a CIF file that is compatible with Magic and cifp.
The "nmos", "cmos", and "scmos" command line options
specify that the CIF output contains only the layers
that are valid for that technology. The "hybrid"
command line option specified that the CIF output
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contains both nMOS and SCMOS layers. This CIF
cannot be loaded into Magic but can be plotted with
the cifplot and cifp programs. The "3u", "2u", and
"l.2u" command line options specify minimum feature
sizes of 3, 2, and 1.2 microns, respectively. Each
technology has a default minimum feature size and a
list of valid minimum feature sizes. The program
will not accept an invalid combination of minimum
feature size and technology. A new technology or
minimum feature size entry on the command line
replaces any previous entries and defaults. The CIF
file includes names of sub-modules that are used by
Magic and input/output labels that are connected to
the proper layers. The default technology is nMOS
and the default CIF format is compatible with Magic.
Each technology has a default minimum feature size.

9. Alternatives/Impact if not Approved:

A conversion program may be written to convert
from MacPitts CIF to Magic CIF and filter undesired
layers. The program may also be required to modify
the minimum feature size. If MacPitts CIF cannot be
loaded properly into Magic, then the Magic design
rule checker and the Crystal, ESIM, and RSIM
simulators cannot be used on MacPitts layouts.

10. Baselines Affected: 13 March 1987 Version 1.00 MacPitts

11. Documentation/Specifications Affected:

RVLSI-3, An Introduction to Macmitts, J.R. Southard
10 February 1983

RVLSI-5, L5 User's Guide, K.W. Crouch 7 March 1984

12. Other Systems or Configuration Items Affected: None.

13. Effect of SCP/SEP on System Employment, Integrated
Logistics Support (ILS), Training, Effectiveness, etc:

This SCP would increase the number of programs
that could use MacPitts CIF. This would increase
the employment and effectiveness of MacPitts. There
would be no change in ILS. Use of the magic command
line option of MacPitts and procedures for using
MacPitts layouts in Magic, Crystal, ESIM, and RSIM
would have to be included in the Silicon Compiler
Training Syllabus.
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14. Net Effect on System Resources (e.g., Processing Time,
Memory/Disk Space):

This change adds less than 500 lines of changes
and additions to the MacPitts source code, including
comments and separator lines. The size of the
compiled program is not significantly increased.
Run time memory requirements on a sample design
should increase by 10% and design compile time
should increase by 10% to 20%.

15. Developmental Requirements: 4 man-weeks for recoding
and testing.

16. SCP/SEP Effectivity Point: As soon as possible

17. Date Approval Needed By: No applicable established
schedule.

18. This SCP/SEP Must be Accomplished Before/With/After:

No relationship to other pending modifications.

19. Supersedes or Replaces SCP/SEP/STR:

This SCP supersedes SCP-l/

20. Approved By:

21. Approval Date:

22. Changes Installed By:

23. Installation Date:

Testing Results:

Several designs, including incrementer.mac and taxi.mac,
have been compiled with these changes and successfully
loaded into Magic and cifp. The design are not distorted,
the sub-module names are recognized by Magic, and the
input/output labels are connected to the proper layers.

A run without the magic option selected produced the
same CIF output as the baseline program without
modifications with the exception of the system
identification comment added in the modifications.

ROMO, ROMl, and ROMnull cells with SCMOS layers have
been generated and loaded into Magic.
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All changes listed in the remainder of this software change
proposal are a combination of modified original
MacPitts programs and new programs.

The following are changes to L5.1:

;;;;;; >>>>>> Add the following to the modification history:

;;; 8 Apr 1987 J. Harmon added the capability to output CIF
in Magic compatible format by adding a new
global variable, --L5-magic-flag, an
initialization procedure for the new
variable, and new functions magic! and
magic? to change and query the value of the
variable respectively. Added conditional
processing to the cifout, cifout-external-
names, cifout-external-name, cifout-define-
symbol, cifout-call-symbol, move-symbol,
cifout-rect, and merge-cifout-files
functions. Upgraded the lambda-to-
centimicron function to convert lambda
measurements to scaled Magic measurements.

;;;

;;; 14 Apr 1987 J Harmon added new global variables --L5-
scale-factor-a and --L5-scale-factor-b to L5
for scaling the numbers in the cifout
section. The number output is the number of
centimicrons times --L5-scale-factor-b and
divided by --L5-scale-factor-a. Added new
initialization for the two new global
variables. Updated lambda-to-centimicron to
use the new scale factors. Added new
function set-scale-factors to set the values
of the scale factors and scale-factor-a? and
scale-factor-b? to return the values of the
scale factors. Updated cifout-define symbol
to use the new scale factors. Updated
allowed-layers to remove SCMOS layers from
the nMOS technology and add the SCMOS, CMOS,
and hybrid technologies. Added allowed-
technologies? to test for a valid
technology, default-minimum-feature-size and
allowed-feature-sizes to return the default
and valid minimum feature sizes for the
current technology, and pad-glass-layer? to
return the layer for the pad holes in the
over-glass layer in the current technology.
Added convert-feature-size to convert a
minimum feature size command line option to
a lambda spacing. updated rect, box, and
mark to process layers correctly.
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;;; 16 Apr 1987 J Harmon changed the name of minimum-
feature-size! and minimum-feature-size
functions tc lambda-spacing! and lambda-
spacing ana changed the name of the global
variable --L5-minimum-feature-size to --L5-
lambda-spacing to avoid confusion. The
value used in these functions and variable
is for the lambda spacing and not the
minimum feature size that is twice the
lambda spacing.

;;;

;;; 16 Apr 1987 J Harmon added defsymbols for common SCMOS
contacts.

;;;;;>>>> Replace the following declaration in Headers
section

(declare
;; 8 Apr 87 J Harmon added new global variable --L5-

magic-flag to be used to select magic style
cif output. A value of nil or () disables
magic cif output and a value of t or non-nil
value enables magic cif output.

;;

;; 14 Apr 87 J Harmon added new global variables --L5-
scale-factor-a and --L5-scale-factor-b to
specify the scaling used in CIF output.

;;

;; 16 Apr 87 J Harmon changed name of --L5-minimum-
feature-size to --L5-lambda-spacing for
clarity. The minimum feature size is two
times the lambda spacing.

(special --L5-magic-flag
--L5-scale-factor-a
--L5-scale-factor-b
--L5-symbol-port
--L5-symbol-file
--L5-symbol-list
--L5-symbol-number
--L5-technology
;;jh changed name of --L5-minimum-feature-size to
;; --L5-lambda-spacing for clarity. The
; ; minimum feature size is two times the lambda
;; spacing.
--L5-lambda-spacing
attributes
dx
dy
name
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item-tree
path
symbol
symbol-id))

;;;;;>>>Add or replace the following setqs to the Global
;;;;;>>>Variables part of the Definitions section.

(setq --L5-magic-flag ())
;; 8 Apr 87 J Harmon added initialization for the new --

L5-magic-flag variable. The initial setting
is with magic cif output disabled.

(setq --L5-scale-factor-a 1)
;; 14 Apr 87 J Harmon added initialization for the new

--L5-scale-factor-a variable. The initial
setting is 1.

(setq --L5-scale-factor-b 1)
;; 14 Apr 87 J Harmon added initialization for the new

--L5-scale-factor-b variable. The initial
setting is 1.

(setq --L5-lambda-spacing 200)
;; 16 Apr 87 J Harmon changed name of --L5-minimum-feature-

size to --L5-lambda-spacing for clarity. The
minimum feature size is two times the lambda
spacing. Also made the default lambda spacing
200 centimicrons.

;;;;;>>>Add or replace the following functions to the
;;;;;>>>Changeable common definitions part of the Common
;;;;;>>>functions section

(def lambda spacing!
;; 16 Apr 87 J Harmon renamed minimum-feature-size!

function to lambda-spacing! and replaced all
re-ferences to minimum feature size to lambda
spacing to avoid confusion. The actual
value used in the program is the lambda
spacing and not the minimum feature size
that is two times the lambda spacing.

(lambda (lambda-spacing)
(setq --L5-lambda-spacing lambda-spacing)))

(def lambda spacing
;; 16 Apr 87 J Harmon renamed minimum-feature-size

function to lambda-spacing and replaced all
references to minimum feature size to lambda
spacing to avoid confusion. The actual
value used in the program is the lambda
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spacing and not the minimum feature size
that is two times the lambda spacing.

(lambda ()
--L5-lambda-spacing))

(def magic!
;; 8 Apr 87 J Harmon added the magic! function that sets

the value of the L5 global variable --L5-
magic-flag to the argument of the magic!
function. This allows separately compiled
procedures to set the flag without direct
access to the variable.

(lambda (magic-flag)
(setq --L5-magic-flag magic-flag)))

(def magic?
;; 8 Apr 87 J Harmon added the magic? function that reads

the value of the L5 global variable --L5-
magic-flag and returns it as the value of the
magic? function. This allows separately
compiled procedures to read the flag without
direct access to the variable.

(lambda ()
--L5-magic-flag))

(def set-scale-factors
;; 14 Apr 87 J Harmon added set-scale-factors function that

sets the values of the two new variables --L5-
scale-factor-a and --L5-scale-factor-b to the
values passed to the function.

(lambda (scale-a scale-b)
(setq --L5-scale-factor-a scale-a)
(setq --L5-scale-factor-b scale-b)))

(def scale-factor-a
;; 14 Apr 87 J Harmon added a new scale-factor-a function

that returns the value of the new variable --
L5-scale-factor-a

(lambda ()
--L5-scale-factor-a))

(def scale-factor-b
;; 14 Apr 87 J Harmon added a new scale-factor-b function

that returns the value of the new variable --
L5-scale-factor-b

(lambda ()
--L5-scale-factor-b))

(def allowed-technologies
;; 14 Apr 87 J Harmon added allowed-technologies function

to L5. This function returns a list of
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allowed technologies.
(lambda ()
'(nmos cmos scmos hybrid)))

(def allowed-layers
;; 23 Jan 87 E. Malagon added allowed layers. Allows

changing from default nmos to cmos, scmos.
Adds hybrid nmos technology that has both nmos
and scmos layers.

;; 14 Apr 87 J Harmon added hybrid technology and reduced
nmos layers to actual nmos layers.

(lambda ()
(cond
((eq 'nmos (technology)) '(ND NP NM NI NC NG NB NX XP))
((eq 'hybrid (technology)) '(ND NP NM NI NC NG NB NX XP

CPG CAA CMF CMS CSN CSP CCP CCA CVA COG CWP CWN))
((eq 'cmos (technology)) '(CD CP CM CM2 CS CC CG CW NX

XP))
((eq 'scmos (technology)) '(CPG CAA CMF CMS CSN CSP CCP

CCP CVA COG CWP CWN))
(t (L5-err

'IThat technology is not recognized by L51)))))

(def default-minimum-feature-size
;; 14 Apr 87 J Harmon added new function default-minimum-

feature-size that returns a default minimum
feature size for the current L5 technology.

(lambda ()
(cond
((eq 'nmos (technology)) '4u)
((eq 'hybrid (technology)) '3u)
((eq 'cmos (technology)) '3u)
((eq 'scmos (technology)) '3u)
(t (L5-err

'IThat technology is not recognized by L51;))))

(def allowed-minimum-feature-sizes
;; 14 Apr 87 J Harmon added a new function allowed-minimum-

feature-sizes that returns a list of the
allowed minimum feature sizes for the current
technology.

(lambda ()
(cond
((eq 'nmos (technology)) '(4u 5u))
((eq 'hybrid (technology)) '(l.2u 2u 3u 4u 5u))
((eq 'cmos (technology)) '(4u 5u))
((eq 'scmos (technology)) '(l.2u 2u 3u))
(t (L5-err
'IThat minimum feature size is not recognized by L51)))))
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(def convert-feature-size
;; 14 Apr 87 J Harmon added a new function convert-feature-

size that accepts a minimum-feature-size in
option-list format and returns the lambda
spacing in centimicrons.

(lambda (min-size)
(cond
((eq '5u min-size) 250)
((eq '4u min-size) 200)
((eq '3u min-size) 150)
((eq '2u min-size) 100)
((eq 'l.2u min-size) 60)
(t (L5-err 'lhat minimum feature size is not recognized

by L51)))))

(def pad-glass-layer
;; 14 Apr 87 J Harmon added function pad-glass-layer that

returns the glass layer associated with pads
in the current technology.

(lambda ()
(cond
((eq 'nmos (technology)) 'NG)
((eq 'hybrid (technology)) 'NG)
((eq 'cmos (technology)) 'CG)
((eq 'scmos (technology)) 'COG)
(t (L5-err

'IThat technology is not recognized by L51)))))

;;;>>> Replace the following in the Item Creation section:

(def rect
;; 14 Apr 87 J Harmon removed the test for a valid layer

from the rect function. This allows the
cifout-rect function to determine if a
rectangle should be put into the output.

(lambda (layer Xmin Ymin Xmax Ymax)
(cond
;; jh removed test for valid layer from rect function.

This allows the cifout-rect function to determine
if a rectangle should be put into the output.

((greaterp Xmin Xmax) (L5-err
'IXmin should be less than or equal to Xmax))

((greaterp Ymin Ymax) (L5-err
'IYmin should be less than or equal to Ymaxj))(t

(make-item
Xmin
Ymin
Xmax
Ymax
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()
(make-rect-tree layer Xmin Ymin Xmax Ymax ))))))

(def box
;; 14 Apr 87 J Harmon removed the test for a valid layer

from the box function. This allows the
cifout-rect function to determine if a
rectangle should be put into the output.

(lambda (layer length width xcenter ycenter)
(cond
;; jh removed test for valid layer from box function.

This allows the cifout-rect function to determine
if a rectangle should be put into the output.

((lessp length 0) (L5-err 'IIllegal box lengthl))
((lessp width 0) (L5-err 'IjIllegal box widthl))
(t
(let ((Xmin (diff xcenter (quotient length 2.0)))

(Ymin (diff ycenter (quotient width 2.0)))
(Xmax (plus xcenter (quotient length 2.0)))
(Ymax (plus ycenter (quotient width 2.0))))

(make-item
Xmin
Ymin
Xmax
Ymax
()
()
(make-rect-tree layer Xmin Ymin Xmax Ymax)))))))

(def mark
;; 14 Apr 87 J Harmon removed the test for a valid layer

from the mark function. This allows the
cifout-rect function to determine if a

; ; rectangle should be put into the output.
(lambda (name x y layer attributes)
(cond
((not (number? x))
(L5-err 'IPoint x coordinate must be a numberJ))

((not (number? y))
(L5-err 'IPoint y coordinate must be a numberi))

;; jh removed test for valid layer from mark function.
This allows the cifout-rect function to determine
if a rectangle should be put into the output.

((not (list? attributes))
(L5-err 'IPoint attributes must be in a listi))
(t
(make-item
x
y
x
y
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(make-points (make-point (list name) x y layer
attributes))

()
(make-null-tree))))))

;;;;;>>>>>Replace the following functions in the Item Cifout
;;;;;>>>>>section

(def cifout
;; 8 Apr 87 J Harmon added Magic compatible cifout

operations.
;; 16 Apr 87 J Harmon replaced the function minimum-

feature-size with the new function name
lambda-spacing in cifout to avoid confusion.
the value used is the lambda spacing and not
the minimum feature size that is twice the
lambda spacing.

(lambda (item file title)
(cond
((null item) (L5-err 'Icannot cifout null iteml))
(t (let ((cifout-file (concat file '.cif))

(cifout-portl
(outfile (concat (scratch-directory) 'I/ file

'.cif 1)))
(cifout-filel (concat (scratch-directory) '/

file '.cif 1))
(cifout-port2
(outfile (concat (scratch-directory) 'I/ file

'.cif 2)))
(cifout-file2 (concat (scratch-directory) 'I/

file '.cif 2)))
(terpri (L5-symbol-port))
(patom "(Title : " cifout-portl)
(patom title cifout-portl)
(patom ");" cifout-portl)
(terpri cifout-portl)
(patom "(U.S. Naval Postgraduate School);"

cifout-portl)
(terpri cifout-portl)
;; jh added system identification comment to the CIF
; ; header.
(patom "(ECE Department ISI System);" cifout-portl)
(terpri cifout-portl)
(patom "(lambda is " cifout-portl)
(patom (lambda-spacing) cifout-portl)
(patom " centimicrons);" cifout-portl)
(terpri cifout-portl)
;; jh added symbol 1 with a scaling factor of 50 to

the CIF header. Also added CIF User Extension
9 with the title to make the name of the new
symbol 1 be the title of the design. Also
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added processing for the magic option.
(cond ((magic?) (patom "DS 1 " cifout-portl)

;; 14 Apr 87 jh added variable scale
factors

(patom (scale-factor-a) cifout-portl)
(patom " " cifout-porti)
(patom (scale-factor-b) cifout-portl)
(patom ";" cifout-portl)
(terpri cifout-portl)
(patom "9 " cifout-portl)
(patom title cifout-portl)
(patom ";" cifout-portl)
(terpri cifout-portl)))

(cifout-external-names
(find-attributes item '(external)) cifout-portl)

;; jh deleted extra line for magic CIF output
(cond ((not(magic?)) (terpri cifout-portl)))
;; jh added processing to determine which file gets
; ; the tree output
(cifout-tree-walker (item-tree item) ()

(cond ((magic?) cifout-porti)
(t cifout-port2)))

;; jh added end of symbol 1 for magic.
(cond ((magic?) (patom "DF;" cifout-portl)

(terpri cifout-portl))
(t (patom "End" cifout-port2)))

;; jh added processing to determine which file gets
end of line.

(terpri (cond ((magic?) cifout-portl)
(t cifout-port2)))

;; jh added call to symbol 1 and end for magic CIF
; ; output
(cond ((magic?) (patom "C 1;" cifout-port2)

(terpri cifout-port2)
(patom "End" cifout-port2)
(terpri cifout-port2)))

(merge-cifout-files cifout-file cifout-filel
cifout-file2)

(close cifout-portl)
(close cifout-port2))))))

(def cifout-external-names
;; 24 Jan 87 E. Malagon added the char 't' to the call to

cifout-external-name in cifout-external-names
to initiate non-MIT option. This allows
points to be plotted with their labels. '94'
extension is more conventional than the '0'
extension.

8 Apr 87 J. Harmon removed extra line for Magic CIF
(lambda (points cifout-port)
(cond
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;; jh removed extra line for magic CIF option
((null points) (cond ((not(magic?))

(terpri cifout-port))))
(t
(cifout-external-name (car points) cifout-port t)
(cifout-external-names (cdr points) cifout-port)))))

(def cifout-external-name
;; 24 Jan 87 E. Malagon added non-MIT option to cifout-

external-name
;; 25 Mar 87 J. Harmon changed name of VDD to Vdd for

proper simulator input
;; 25 Mar 87 J. Harmon added exclamation point to end of

external names for proper simulator input.
;; 8 Apr 87 J. Harmon added rectangles of metal and pad

for proper binding of labels to materials in
Magic.

;; 14 Apr 87 J Harmon added processing to make cifout-
external-name technology independent, it only
outputs an external name if it is for a valid
layer in the current technology. The layer
for the hole in the over-glass is determined
by the pad-glass-layer function. The layer
used is based on the current technology.

(lambda (point cifout-port &optional non-MIT)
(let ((name (capitalize (atomize-external-name

(point-name point)))))
;; jh added a box of metal under each external name so
; ; that magic leaves the label for the name connected

to metal rather than move it to space when the CIF
file is loaded into magic.

;; jh added test for a valid layer
(cond ((member (point-layer point) (allowed-layers))

(cond ((magic?) (patom "L " cifout-port)
(patom (point-layer point) cifout-port)
(patom "; B L " cifout-port)
(patom (lambda-to-centimicron 4)

cifout-port)
(patom " W " cifout-port)
(patom (lambda-to-centimicron 4)

cifout-port)
(patom " C " cifout-port)
(patom (lambda-to-centimicron

(point-x point)) cifout-port)
(patom ", " cifout-port)
(patom (lambda-to-centimicron

(point-y point)) cifout-port)
(patom "1;"1 cifout-port)
(terpri cifout-port)
(patom "L " cifout-port)
; jh replaced fixed glass layer with a
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call to the function that returns the
; ; glass layer for the current

technology.
(patom (pad-glass-layer) cifout-port)
(patom "; B L " cifout-port)
(patom (lambda-to-centimicron 4)

cifout-port)
(patom " W " cifout-port)
(patom (lambda-to-centimicron 4)

cifout-port)
(patom " C " cifout-port)
(patom (lambda-to-centimicron

(point-x point)) cifout-port)
(patom ", " cifout-port)
(patom (lambda-to-centimicron

(point-y point)) cifout-port)
(patom ";" cifout-port)
(terpri cifout-port)))

(cond (non-MIT (patom "94 " cifout-port)
;; jh Changed name of VDD to Vdd for proper

simulator input.
(cond ((and (magic?) (equal name 'VDD))

(patom "Vdd" cifout-port)
(t (patom name cifout-port)))

;; jh Added exclamation point to end of
external names for proper simulator
input.

(cond ((magic?) (patom "!" cifout-port)))
(patom " " cifout-port)
(patom (lambda-to-centimicron

(point-x point)) cifout-port)
(patom " " cifout-port)
(patom (lambda-to-centimicron

(point-y point)) cifout-port)
(patom " " cifout-port)
(patom (point-layer point) cifout-port)
(patom ";" cifout-port)
(terpri cifout-port))
(t (patom "0 " cifout-port)
(patom (lambda-to-centimicron

(point-x point)) cifout-port)
(patom " " cifout-port)
(patom (lambda-to-centimicron

(point-y point)) cifout-port)
(patom " " cifout-port)
(patom (point-layer point) cifout-port)
(patom " N " cifout-port)
(patom name cifout-port)
(patom ";" cifout-port)
(terpri cifout-port))))))))
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(def cifout-define-symbol
;; 8 Apr 87 J Harmon added Magic compatible define symbol

output.
;; 14 Apr 87 J Harmon added scale factor output to cifout-

define-symbol
(lambda (item function-name cifout-port)
(patom "DS " cifout-port)
;; jh Added 1 to the structure number for magic CIF

output. Structure number 1 is the whole design.
; ; added scale factor for magic.
(cond ((magic?)

(patom (1+ (length (L5-symbol-list))) cifout-port)
(patom " " cifout-port)
;; jh added the scale factor printing from the new

scale-factor-a and scale-factor-b functions.
(patom (scale-factor-a) cifout-port)
(patom " " cifout-port)
(patom (scale-factor-b) cifout-port)
(t (patom (length (L5-symbol-list)) cifout-port)))

(patom ";" cifout-port)
(terpri cifout-port)
;; jh Added function 9 for magic CIF output to name a
; ; structure with the function name.
(cond ((magic?)

(patom "9 " cifout-port)
(patom function-name cifout-port)
(patom ";" cifout-port)
(t
(patom "(name: " cifout-port)
(patom function-name cifout-port)
(patom ");" cifout-port)))

(terpri cifout-port)
(patom "(bounding box: " cifout-port)
(patom (left item) cifout-port)
(patom "," cifout-port)
(patom (bottom item) cifout-port)
(patom "," cifout-port)
(patom (right item) cifout-port)
(patom "," cifout-port)
(patom (top item) cifout-port)
(patom ");" cifout-port)
(terpri cifout-port)
(patom "DF;" cifout-port)
(terpri cifout-port)))

(def cifout-call-symbol
;; 8 Apr 87 J Harmon added 1 to symbol numbers for Magic

CIF output
(lambda (symbol-call-tree stack cifout-port)
(cond
(t
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(patom "C " cifout-port)
;; jh added 1 to symbol numbers for magic CIF since

symbol 1 is the whole design
(cond ((magic?)

(patom
(1+ (symbol-call-tree-name symbol-call-tree))
cifout-port))

(t
(patom
(symbol-call-tree-name symbol-call-tree)
cifout-port)))

(patom " " cifout-port)
(cifout-called-symbol-operation-handler stack
cifout-port)
(patom ";" cifout-port)
(terpri cifout-port)))))

(def cifout-rect
;; 14 Apr 87 J Harmon added a test for valid layers to

cifout-rect.
(lambda (rect-tree cifout-port)
(cond
((or (=0 (rect-width rect-tree))

(=0 (rect-length rect-tree)))
())

;; jh added a test for valid layer to cifout-rect
((member (rect-tree-layer rect-tree) (allowed-layers))
(let ((center (rect-center rect-tree)))
(patom "L " cifout-port)
(patom (rect-tree-layer rect-tree) cifout-port)
(patom "; B L " cifout-port)
(patom (lambda-to-centimicron (rect-length rect-tree))

cifout-port)
(patom " W " cifout-port)
(patom (lambda-to-centimicron (rect-width rect-tree))

cifout-port)
(patom " C " cifout-port)
(patom (lambda-to-centimicron (car center))

cifout-port)
(patom ", " cifout-port)
(patom (lambda-to-centimicron (cadr center))

cifout-port)
(patom ";" cifout-port)
(terpri cifout-port))))))

(def lambda-to-centimicron
• 14 Apr 87 J Harmon added processing of scale factors in

the function lambda-to-centimicron.
,, 16 Apr 87 J Harmon replaced minimum-feature-size with

lambda-spacing in lambda-to-centimicron to
avoid confusion. The value used is the lambda
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spacing and not the minimum feature size that
is twice the lambda spacing.

(lambda (number)
(fix (plus .5 (quotient

(times (scale-factor-b)
(times (lambda-spacing) number))
(scale-factor-a))))))

;;;;;>>>>>Add the following heading, note, and functions to
;;;;;>>>>>the Basic Items section:

*** SCMOS Contacts ***

;;; Note: The substrate contacts called nsubstratencontact,
nncontact, nsc, nnc, psubstratepcontact,
ppcontact, psc, and ppc are not included as
default structures since they do not act properly
in Magic as separate symbols. They produce
inconsistencies between layers in different
cells. These contacts must be built inside each
layout.

(defsymbol polycontact ()
;; 16 Apr 87 J Harmon added a defsymbol for a SCMOS

polycontact.
(merge
(rect 'CPG 0 -4 4 0)
(rect 'CMF 0 -4 4 0)
(rect 'CCP 1 -3 3 -1)))

(def pcontact
;; 16 Apr 87 J Harmon added a function pcontact that

returns a polycontact symbol
(lambda ()
(polycontact)))

(def pc
;; 16 Apr 87 J Harmon added a function pc that returns

a polycontact symbol
(lambda ()
(polycontact)))

(defsymbol ndcontact ()
;; 16 Apr 87 J Harmon added a defsymbol for a SCMOS

ndcontact.
(merge
(rect 'CAA 0 -4 4 0)
(rect 'CMF 0 -4 4 0)
(rect 'CCA 1 -3 3 -1)
(rect 'CWP -5 -9 9 5)))
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(def ndc
;; 16 Apr 87 I Harmon added a function ndc that returns

a ndcontact symbol
(lambda ()
(ndcontact)))

(defsymbol pdcontact ()
;; 16 Apr 87 J Harmon added a defsymbol for a SCMOS

pdcontact.
(merge
(rect 'CAA 0 -4 4 0)
(rect 'CMF 0 -4 4 0)
(rect 0CCA 1 -3 3 -1)
(rect 'CSP -2 -6 6 2)))

(def pdc
;; 16 Apr 87 J Harmon added a function pdc that returns

a pdcontact symbol
(lambda ()
(pdcontact)))

(defsymbol m2contact ()
;; 16 Apr 87 J Harmon added a defsymbol for a SCMOS

m2contact.
(merge
(rect 'CMF 0 -4 4 0)
(rect 'CMS 0 -4 4 0)

(rect 'CVA 1 -3 3 -1)))

(def m2c
;; 16 Apr 87 J Harmon added a function m2c that returns

a m2contact symbol
(lambda ()
(m2contact)))

(def via
;; 16 Apr 87 J Harmon added a function via that returns

a m2contact symbol
(lambda ()
(m2contact)))

(def v
;; 16 Apr 87 J Harmon added a function v that returns

a m2contact symbol
(lambda ()
(m2contact)))

Make the following changes to prepass.l:
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;;;;;>>>>> Add the following to the modification history:

;;; 8 Apr 87 J Harmon added the capability to output CIF in
Magic compatible format by adding a new
command line option "magic". Added processing
for the new option to the macpitts-compiler
and process-option functions.

;;; 16 Apr 87 J Harmon added processing to macpitts-compiler
... to accommodate technologies specified on the

command line and add additional minimum
feature sizes. Added new functions process-
command-line-options, process-technology-
option, process-minimum-feature-size, and

;; ; process-magic-option to support technology
selection. Upgraded option processing to have
a new technology selection replace all current

;; ; technology selections and for a new minimum
feature size selection to replace all current
minimum feature size selections. included a

:;, default technology, and default minimum
feature sizes for each technology. Included

;; ; checking for valid technology/minimum feature
size combinations. Included processing to
establish scale factors for CIF output.

;;;;;>> add or replace the following functions in
;;;;;>> prepass.l:

(def macpitts-compiler
;; This function if the executive program for the macpitts
;; compiler. It includes command line option processing
;; and calls all programs for loading the library file,
;; producing object file output, producing CIF output, and
;; for functionally simulating the design specification.
;;

;; 8 Apr 87 J Harmon added processing in macpitts-compiler
to process the magic command line option. The
processing includes setting the new magic flag
in L5 to true and setting the minimum-feature-
size to 200. This will be used with a
reduction of 50 used in magic. The reduction
factor is the scaling in the DS lines for the
CIF that has a=100 and b=2 meaning that the
reduction factor = a/b is 50. This is
multiplied times all values in the CIF to get
the actual value in centimicrons.

;; 16 Apr 87 J Harmon added processing for scmos, cmos, and
hybrid technologies and different minimum
feature sizes to macpitts-compiler. Included
calls to new functions to process-command-

;; line-options, process-technology-option,
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process-minimum-feature-size, and process-
magic-option.

(lambda (operands)
(prog (file-name file object obj item)
(setq initial-ptime (ptime))
(setq initial-gccount \$gccount\$)
(cond ((or (not (list? operands))

(null operands)
(not (atom? (car operands))))

(patom "usage: (macpitts <filename> [<options>])")
(terpr)
(return ()))

(setq file-name (car operands))
;; jh replaced old process-option function with new

process-command-line-options function. The new
function updates the option list with the options
specified on the command line.

(process-command-line-options (cdr operands))
(statistic (concat "for project " file-name))
(statistic (concat "options: "

(slash (explode option-list)

(function concat))))
;; jh added new function to process the technology

option. This function finds a technology in the
option-list and sets the L5 technology. If there
is no technology in the option-list, the default
nmos technology is used.

(process-technology-option)
;; jh added new function to process the minimum feature

size option. This function finds a minimum feature
size in the option-list and sets the L5 minimum
feature size. If there is no minimum feature size
in the option-list, a default minimum feature size
is used.

(process-minimum-feature-size)
;; jh added a new function to process the magic option.
; ; This function sets or clears the magic flag and

sets the scale factors for magic output.
(process-magic-option)
(cond ((member? 'int option-list)

(cond ((null (catch (interpret file-name) note))
(return ())))))

(con& ((or (member? 'obj option-list)
(member? 'cif option-list))

(setq object (get-object file-name))
(t (return t)))

(cond ((null object) (return ()))
(statistic (concat "Data-path has

(length (object-data-path object))
Units"))
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(cond ((member? 'obj option-list)
(herald "Outputing .obj file")
(setq obj

(make-object
(purge-library (object-definitions object)
(object-flags object)
(object-data-path object)
(object-control object)
(object-pins object)))

(setq file (outfile (concat file-name ".obj")))
(pp-form obj file)
(close file)))

(cond ((member? 'cif option-list)
(setq item (catch (layout-object object) note))
(cond ((null item) (return ())))
(herald "Outputing .cif file")
(cifout item file-name file-name)))

(statistic (concat "Memory used - "
(/ (memory) 1024) "K"))

(statistic (concat "Compilation took "
(quotient (- (car (ptime))

(car initial-ptime))
3600.0)

CPU minutes"))
(statistic (concat "Garbage collection took

(quotient (- (cadr (ptime))
(cadr initial-ptime))

3600.0)
CPU minutes"))

(statistic (concat "For a total of
(- \$gccount\$ initial-gccount)
garbage collections"))

(return t))))

(def process-command-line-options
;; 8 Apr 87 J Harmon added processing to process-option to

remove options with a no prefix from the
option-list if the option without the no
prefix is specified on the command line.

;; 13 Apr 87 J Harmon moved all command line option
processing to this new process-command-line-
options function.

(lambda (options)
(do ((input-list options (cdr input-list)))

((atom input-list))
;; add option to option list and delete conflicting
;; options
(add-delete-option (car input-list)))))

(def add-delete-option
;; 13 Apr 87 J Harmon renamed the old process-option to
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add-delete-option. This function adds options
to the option-list and deletes conflicting
options.

(lambda (option)
(cond ((not (atom? option))

(warning "Option must be an atom"))
;Check for options that are not lists - if not,
;issue warning

((and (> (length (explode option)) 2)
(equal 'n (car (explode option)))
(equal 'o (cadr (explode option))))
;Check for options that start with "no"

(delete-option (implode (cddr (explode option))))
;Remove option without "no" from option list
(add-option option))
;; jh added processing to drop options that start

with no from the option list if the option
without the no is specified in the command
line.

((member option (allowed-technologies))
;; Check if the option is a technology - if it is,
;; remove all other technologies and add this
;; technology.
(do ((tech-list

(allowed-technologies)
(cdr tech-list)))

((atom tech-list))
(delete-option (car tech-list)))

(add-option option))
((and (equal 'u (car (last (explode option))))
;;Check if the option is a minimum feature size - if
;;it is, remove all other minimum feature sizes and
;;add this minimum feature size.

(greaterp (length (exploden option)) 1)
(greaterp (nth

(difference
(length (exploden option)) 2)

(exploden option))
47)

(greaterp 58
(nth (difference

(length (exploden option))
2)
(exploden option))))

(delete-minimum-feature-sizes)
(add-option option)

(t (add-option option)
;;Add all other options and delete any "no"
;;version.
(delete-option (implode (append
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'(n o)
(explode option))))))))

(def delete-option
;; 13 Apr 87 J Harmon added delete-option function that

removes all instances of option from the
option-list.

(lambda (option)
(cond ((member option option-list)

;Check if option is on the option-list - if it is,
;remove it.
(setq option-list

(nthdrop
(iota option option-list)
option-list))

(delete-option option)))))

(def add-option
;; 13 Apr 87 J Harmon added add-option function that adds

an option to the option list after first
removing all instances of the option from the
list.

(lambda (option)
(delete-option option)
(setq option-list (cons option option-list))))

(def delete-minimum-feature-sizes
;; 13 Apr 87 J Harmon added delete-minimum-feature-sizes

function that removes all minimum feature size
;; d specifications from the option list.(lambda ()
(prog ()
(do ((size-list option-list (cdr size-list))

(size-option (car option-list) (car size-list)))
((atom size-list))
;finish when the size list is just ()
(cond ((and (equal

'U
(car (last (explode size-option))))
;Check if the option is a minimum
;feature size - if it is, remove all
;instances of it from the option list.
(greaterp
(length (exploden size-option))
1)
(greaterp (nth (difference

(length
(exploden size-option))

2)
(exploden size-option))

47)
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(greaterp 58
(nth (difference

(length
(exploden size-option))

2)
(exploden size-option))))

(delete-option size-option)
;remove the minimum feature size
(delete-minimum-feature-sizes)
;use recursion after a minimum feature size
;has been removed and disable repetition if a
;minimum feature size has been removed.
(return nil)))))))

(def process-technology-option
;; 14 Apr 87 J Harmon added new function process-

technology-option that finds a technology in
the option-list and sets the L5 technology.
If there is no technology in the option-list,
the default nmos technology is used.

(lambda ()
(do ((tech-list option-list (cdr tech-list))

(tech 'nmos)) ;tech is reset by setq in the do loop
;;look for a technology in the option list - if a
;;technology is in the list, use it - if no
;;technology in the list, use nmos as default.

((atom tech-list) (technology! tech)
(statistic
(concat
"Using
tech
" technology")))

(cond ((member (car tech-list) (allowed-technologies))
(setq tech (car tech-list)))))))

(def process-minimum-feature-size
;; 14 Apr 87 J Harmon added new function process-minimum-

feature-size that sets a lambda spacing based
on a minimum feature size specified on the
command line or a default minimum feature size
for the current technology. This function
verifies that the selected minimum feature
size is valid for the current technology.

(lambda ()
(let ((min-size

(do ((size-list option-list (cdr size-list))
(size-option
(car option-list)
(car size-list))

(size-found
(default-minimum-feature-size)
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;;Check if the option is a minimum feature
;;size - if it is set size-found to the new
;;size
(cond ((and

(equalOu

(car (last (explode size-option))))
(greaterp (length

(exploden size-option))
1)

(greaterp
(nth
(difference
(length (exploden size-option))
2)
(exploden size-option))

47)
(greaterp
58
(nth
(difference
(length (exploden size-option))
2)
(exploden size-option))))

size-option)
(t size-found))))

((atom size-list) size-found))))
;; jh verify that the minimum feature size is valid
(cond ((member min-size

(allowed-minimum-feature-sizes))
;; jh set lambda spacing according to the

minimum feature size.
(lambda-spacing!
(convert-feature-size min-size))

(statistic
(concat "Minimum Feature Size " min-size)))

(t (note
(concat
"Invalid Minimum Feature Size "

min-size
" for technology
(technology)
,, . 11)))))))

(def process-magic-option
;; 14 Apr 87 J Harmon added new function process-magic-

option that sets or clears the magic flag and
sets the scale factors for CIF output. The
default is magic format.

(lambda ()
(cond ((member? 'nomagic option-list)
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(magic! ()
(set-scale-factors 1 1))

(t (magic! t)
(cond ((eq 'nmos (technology))

(set-scale-factors 100 2)
(t (set-scale-factors 1 2)))))))

The following are changes to frame.l:

;;;;;>> Add the following to the revision history for
;;;;;>>> frame.l:

;;; 16 Apr 87 J harmon modified the pad-class function to
make pad20b the default pad file for all
minimum feature sizes except 250 centimicrons.
The checking for valid lambda spacing was
moved to macpitts-compiler in prepass.l.
Replaced minimum-feature-size with lambda-
spacing in layout-object, conductivity-to-
power-bus-width, metal-thickness, and pad-
class functions to avoid confusion. The
actual value used is the lambda spacing and
not the minimum feature size that is twice the
lambda spacing.

;;;;;>> Replace the following functions:

(def layout-object
;; 16 Apr 87 J Harmon replaced minimum-feature-size with

lambda-spacing in layout-object to avoid
confusion. The actual value used is the
lambda spacing and not the minimum feature
size that is twice the lambda spacing.

(lambda (object)
(prog (definitions flags data-path control pins gates

straps conductivity power data-path-length
control-length flags-length top-width bottom-width
data-path-layout control-layout flags-layout
river-layout wing-layout skeleton-layout
internal-layout pins-layout ring-layout layout nets
ring-width top-part bottom-part top-bank
bottom-bank river-width bottom-part-river-points
intended-right intended-top extended-right
extended-top)
(setq definitions (object-definitions object))
(setq flags (object-flags object)
(setq data-path (object-data-path object)
(setq control (object-control object)
(setq pins (object-pins object)
(herald "Extruding gates")
(setq gates (extrude-gates control flags))
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(statistic (concat
"Control has "
(length gates)
" columns"))

(cond ((member? 'opt-c option-list)
(setq gates
(nthelem-list
(order (extrude-basic-straps gates)

gates
(count (length gates))
(function junction-gate-number)
(lambda (basic-strap)
basic-strap)
(lambda (gatel gate2)
(gate-before? gatel gate2 gates))

(lambda (gatel gate2)
(gate-after? gatel gate2 gates)))

gates))))
(setq gates (insert-nor-ground-lines gates))
(herald "Extruding straps")
(setq straps (extrude-straps gates))
(statistic
(concat
"Circuit has "
(slash-alpha
(list
(flags-transistor-count flags)
(data-path-transistor-count
data-path
definitions)
(control-transistor-count gates straps)
(pins-transistor-count pins))

0
(function +)
(lambda (x)
(+ (car x) (cadr x))))
transistors"))

(statistic
(concat
"Control has "
(slash-alpha straps

0
(function max)
(function strap-track-number))"tracks"))

(setq
conductivity
(plus
(data-path-conductivity data-path definitions)
(control-conductivity gates straps)
(flags-conductivity flags)))
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(setq
power
(conductivity-to-power-bus-width conductivity 11))

(statistic
(concat
"Power consumption is "
(conductivity-to-power-consumption
(plus conductivity (pins-conductivity pins)))

" Watts"))
(setq data-path-length

(max
(data-path-required-length
data-path
definitions)
4))

(setq control-length
(control-required-length gates))

(setq flags-length
(max
(flags-required-length flags power)
4))

(setq top-width
(max
(data-path-required-width
data-path
power
definitions)
(flags-required-width flags power)))

(setq bottom-width
(control-required-width straps))

(herald "Laying out data-path")
(setq data-path-layout

(layout-data-path
data-path
power
top-width
definitions))

(herald "Laying out control")
(setq control-layout

(layout-control
gates
straps
power
bottom-width))

(herald "Laying out flags")
(setq flags-layout

(layout-flags
flags
power
top-width))

(herald "Laying out river")
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(setq top-part
(merge
(move data-path-layout (+ power 3) 0)
(move
flags-layout
(+ power 3 data-path-length 3 power 3) 0)))

(setq bottom-part
(move control-layout (+ power 3) (- power 4)))

(setq bottom-part-river-points
(find-attributes bottom-part '(river)))

(setq top-bank
(sort
(alpha
(lambda (point)
(point-x (find top-part

(point-name point))))
bottom-part-river-points)
(function <)))

(setq bottom-bank
(sort
(alpha (function point-x)

bottom-part-river-points)
(function <)))

(setq river-width
(+ (river-span 'NP 2 top-bank bottom-bank)

(wing-span bottom-part)
(- 4 power)))

(setq intended-top
(+ power

bottom-width
power
river-width
(driver-width)
power
top-width
power
3
power))

(setq intended-right
(+ power

3
(max control-length

(+ data-path-length
3
power
3
flags-length))

3
power))

(setq river-layout
(river 'NP
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2
(wing-span bottom-part)
top-bank
bottom-bank))

(herald "Laying out wing")
(setq wing-layout

(layout-wing
(sort
(find-attributes bottom-part '(wing))
(lambda (pointl point2)
(< (point-x pointl)

(point-x point2))))))
(herald "Laying out skeleton")
(setq skeleton-layout

(layout-skeleton
power
intended-top
intended-right
data-path-length
bottom-width
river-width))

(setq internal-layout
(merge
(move top-part

0

power
bottom-width
power
river-width
(driver-width)
power))

bottom-part
(move (rotcw river-layout)

0

power
bottom-width
power
river-width))

(move wing-layout
0
(+ power bottom-width 4))

skeleton-layout))
(herald "Laying out pins")
(setq pins-layout

(layout-pins
pins
power
intended-right
intended-top
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(make-ring-width 0 0 0 0)
(lookup-logo definitions)))

(setq extended-right
(extend-right pins intended-right))

(setq extended-top
(extend-top pins intended-top))

(setq ring-width
(get-ring-width
(merge internal-layout pins-layout)
extended-right
extended-top))

(setq pins-layout
(layout-pins
pins
power
intended-right
intended-top
ring-width
(lookup-logo definitions)))

(setq nets
(append
(extract-nets
(merge internal-layout pins-layout)
'top
extended-right
extended-top)
(extract-nets
(merge internal-layout pins-layout)
'right
extended-right
extended-top)
(extract-nets
(merge internal-layout pins-layout)
'bottom
extended-right
extended-top)
(extract-nets
(merge internal-layout pins-layout)
'left
extended-right
extended-top)))

(setq ring-layout
(layout-nets nets

extended-right
extended-top
power
(find pins-layout '(power))
(find pins-layout '(ground))))

(setq layout
(first-quadrant
(merge internal-layout
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pins-layout
ring-layout)))

(statistic (concat "Dimensions are
;jh replaced minimum-feature-size
; with lambda spacing
(quotient
(times (right layout)

(lambda spacing))
100000.0)
mm by "

(quotient
(times (top layout)

(lambda spacing))
100000.0)
tmm"))

(return layout))))

(def conductivity-to-power-bus-width
(lambda (conductivity minimum-width)
(max minimum-width

(fix
(plus 0.5

(quotient
(conductivity-to-power-consumption
conductivity)
(times (supply-voltage)

(maximum-metal-current-density)
; jh replaced minimum-feature-size

with lambda-spacing
(lambda-spacing)
(metal-thickness))))))))

(def metal-thickness ;in centimicrons
;; 16 Apr 87 J Harmon replaced minimum-feature-size with

lambda-spacing to avoid confusion
(lambda ()
(times 0.4 (lambda-spacing))))

(def pad-class
;; 16 Apr 87 J Harmon made pad20b the default pad file for

all minimum feature sizes except 250
centimicrons.

;; 16 Apr 87 J Harmon replaced minimum-feature-size with
(a; lambda-spacing to avoid confusion(lambda ()
(cond ((= lambda-spacing 250) 'rinout)

(t 'pad20b))))

Make the following changes to Makefile:
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Add the following to the list of modifications at the start
of Makefile:

# Updated 22 Apr, 1987 by J. Harmon Added magic to the
# default option list in the macpitts.o section

Replace the (setq option-list line in the macpitts section
with the following lines:

(setq option-list
'(magic opt-d opt-c stat obj cif herald nologo))

The following changes are to RVLSI-3 An Introduction to
MacPitts:

On page 4 add the following options to the bottom of the
list of possible <options>:

magic nomagic*
nmos scmos
Cmos hybrid
3u 2u
1.2u

On page 5 add the following to the end of the paragraph at
the top of the page:

If the magic option is set, then the CIF output
will be in a form that is compatible with the Magic
program. If one of the nmos, scmos, cmos, or hybrid
options is selected, the CIF output will be restricted
to valid layers for that technology. The additional
process width options of 3u, 2u, and 1.2u have been
added for the scmos and hybrid technologies. If more
than one technology or process width is specified, the
last entry will be used. The process width must be a
valid width for the technology specified. The default
technology is nmos. The default minimum feature size
for scmos and hybrid technologies is 3 microns and the
default minimum feature size for nmos and cmos
technologies is 4 microns.

RVLSI-5 L5 User's Guide by K.W. Crouch 7 March 1984 is not
consistent with the version of L5 being used by
MacPitts/MSC. The L5 User's Guide will have to be updated
to conform to the version of L5 that is in use. The changes
required by this scp should be developed at that time.
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CIF 3, 33, 38, 40, 52, 56,
140-143, 161, 166

INDEX cif option 41
cifout 38, 40, 52
cifsymbol 143, 144

1+ 46, 83 circuit description 1
acceptance criteria 59 clock 66-68, 71-73
adder 153, 154 clock cycle 17, 24
alpha 168 clock cycle update 167
always 29, 32, 44, 50 clock edge 20
analysis phase 6, 59 clocked 92
AND 28, 30, 31, 168 clocked circuit 17
APL 39 clocked CMOS 62, 68, 90
architecture 3, 8, 32, 60, clocked memory element 17

62 clocked? 167
arg line 51, 52 CMOS 62, 64, 65, 68-75,
argument 11 77-80, 89, 90
argument list 167 column 17, 51, 52
argv 166 combinational logic 17-21,
arithmetic 11 25, 27, 80, 81, 83, 86-
assign-bus-numbers 50 88, 93
back-quote 165 command line option 36,
baseline 141, 168 41, 44, 51, 52, 140
benchmark 161 complementary logic 62,
bit 10, 11, 16, 46, 50, 64, 65, 68, 69, 71, 74,

53-55, 81, 83, 89, 93, 75, 77-80, 89, 90
148-152 component 44, 45, 50

bit line 51, 52 component-list 50
bit slice 10, 16 computer program 1
bounding box 143 cond 29, 88, 89, 95, 96,
branch 22-25 114-116, 132, 145, 147,
buffer 94, 96, 100, 118, 148, 154-158, 161

134 CONDbuffer 118, 120, 133-
bus 8 135
C 38, 39 CONDfeed 115, 116, 132,
c-routines.c 38, 39, 57, 134

165 conditional 94-96, 99,
c-routines.o 39, 57, 165 100, 114, 116, 120, 132
call 25-27, 46, 47, 50, CONDnopass 115, 118, 132,

84, 92 134
capability 59 CONDpass 115, 116, 118,
capacitance 79 132, 134
carry input line 150 CONDtap 115-118, 132, 134
cascade voltage switch CONDtrue 115, 132, 134,

logic 62, 71, 72, 77- 147, 148
79, 90 connection 42

cell 7, 60, 139, 141-144, constant 31, 41, 42, 50,
147, 148, 159 54, 149

cfasl 165 constant substitution 36,
chip 167 41

contact 60
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control 38, 145, 158 data-path 86, 145, 147-
control line 51, 52, 81, 151, 154

82 data-path.1 42, 43, 45-47,
control logic array 8, 11, 53, 54, 86, 98, 166,

16, 17, 43, 44, 50-53, 167
55, 82, 93, 97, 145, data-path.o 57
158 debug 52, 139, 141

control signal 16, 87-89 debugger 168
control-data-path 86 DecodeEvenO 103, 104, 109,
control.1 53, 55, 144, 111, 122, 125-127, 130

147, 148, 158, 166-168 DecodeEvenl 103-105, 109,
control.o 57 111, 122, 125-127, 130
controller 1, 5-8, 28, 32, DecodeLSB 103, 104, 121,

58-63, 72, 73, 77, 80, 125
83, 86, 89, 138, 152, DecodeOddO 103, 108, 109,
154, 161 111, 122, 125, 130

controller data path 86, DecodeOddl 103, 108, 109,
87 111, 122, 125, 129, 130

controller organization 6 definition 35, 41, 44, 47,
controller.1 142 145, 167
counter-no-stack 45, 46, defstruct 35, 36, 39, 40,

49, 81, 83, 85, 161 98
counter-stack 45-47, 84, defstructs.1 36, 40, 44,

85, 161 45, 50, 86, 166, 167
CPU 44 defstructs.o 40, 57
cross reference file 57 defsymbol 45-47, 53-55,
CRYSTAL 140-142, 161 86, 142, 143
cr tty.o 165 defun 167
current state 25, 27 DeMorgan's Laws 31
curses 38, 39, 57, 165 depletion 30
cursor movement 39 design 59
cutoff 60 design decision 59, 80
data 55 design phase 6, 59, 62
data path 8, 10, 11, 16, design rule checker 141,

32, 38, 43, 45, 50-54, 142
61, 80, 81, 83, 86, 87, design specification 3,
89, 93-95, 97, 138 25, 26, 31, 33, 35, 36,

data path internal bus 43, 39, 41, 42, 44, 46, 47,
51, 53, 54 50, 56, 57, 60, 81, 88,

Data Path Unit 91 89, 92, 94, 96, 114,
data path word size 25, 132, 138, 161

27, 28, 82, 83, 86, 87, destination definition 47,
167 50

data primitive 33, 50 determine-number-of-tracks
data processing 8, 10, 27 168
data signal 16 development process 1, 6
data storage 10, 11 dimension 42
data structure 10, 27, 28, display function 43, 44

34-36, 39-45, 50-53, domino logic 62, 69-73, 90
58, 61 drain 79

drive current 96
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drive line 51, 52 floor plan 8, 86, 92, 96,
dual 64, 65, 71, 73, 78 142, 159
dumplisp 38 frame.l 38, 41, 51, 52,
dynamic CMOS 62, 66-69, 53, 55, 166, 167

71. 80, 81, 90 frame.o 57
electrical characteristic Franz Lisp 38, 39, 139,

42 141, 143, 165, 166, 167
enhancement 29, 30 front-page.1 40, 166, 167
env 167 FSM 1, 17-19, 21-23, 25,
.env file 167 27, 28, 32, 61, 68, 80,
environment 141, 167 81, 86-88, 138
err 165 function 42, 50
ESIM 31, 140-142, 161, 162 function definition 41,
eval 35, 36, 41-43 42, 56
evaluation 66-68, 70, 71 functional 8
EvenBuffer 118, 122, 135, functional simulation 31,

137 32, 36, 39, 41, 42, 56,
EvenConnect 104, 111, 125, 57

131 functional simulator 141
EvenInverter 103, 108, garbage collection 44

111, 125, 130 gate 17, 51
exclusive or 74 general.l 36, 43, 54, 56,
expand-form 42 166, 167, 168
ext2sim 141, 142, 161 general.o 57
external node 34 get-library 42
external signal 148 get-object 38
extract definition 41 get-objectl 44
extract-component 50 get-sequencers-from-
extract-component-list 44 component-list 44, 45,
extract.l 38, 41, 44, 51, 47

86, 144, 145, 166, 167 get-sequencers-required-
extract.o 57 definitions 44, 47
extraction 36, 40, 41, 44, global variables 40

50, 51, 58, 61 GND 8, 29, 31
extraction file 141, 142 go 27, 46, 47, 49, 50, 81-
fabrication 140 83, 92
fasl 40 goal 59, 60, 62, 63, 77-80
file name extension 5 grade-predicate 165
file type 5 graph 22
FILO 92 ground 8, 17
FILO stack 93 growth 60
find-number-of-tracks 168 herald 44
finite state machine 1, 8, hold time 20, 21

17, 92 home 143
fixnum 165 homogeneous structure 63
flag 8, 10, 16, 27, 28, hybrid 140

33, 34, 38, 88, 145, hybrid structure 63
167 if 50

flags.l 53, 55, 166 implementation phase 7, 59
flags.o 57 include 40

increment 83, 93
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incrementer 25, 27, 32, layout-label 40
46, 60, 93, 152 layout-mpx 54

installation 139 layout-mpxO 54
instance 1 layout-mpxl 54
instantiate 42, 54 layout-mpx2 54
int option 41 layout-mpx3 54
integer 25 layout-object 38, 41, 51-
integration 7 53, 55
interpreter 167 layout-organelle 43, 54
internal 149 layout-pad 55
internal bus 11, 149-154 layout-pins 53
internal node 34 layout-port-output 54
internal port 10, 11, 16, layout-romo 142

27, 28, 46, 50, 53, 54, layout-roml 142
81-84, 93, 149, 151, layout-singleton-operand-
156-158 list 54

internal port definition layout-skeleton 53
47, 49, 50 layout-unit 53, 54

internal signal 16, 83, layout-weinberger-gates 55
85, 148 layout-weinberger-straps

internal signal definition 55
47, 49 layout-wing 53

internal structure 58, 60 layout-data-path 86
interpret 41, 56 libcurses.a 165
interpret.l 36, 39, 41, library 5, 35, 36, 41-43,

42, 56, 167 50, 56, 57, 60, 158,
interpret.o 57 163, 168
inverter 29-31, 43, 69, library definition 41

73, 76, 130-132, 134- libtermcap 165
137 LIFO 49, 85, 86

ISI 57, 58, 139, 165, 166, lincoln.l 38, 39, 40, 57,
168 165, 168

item 36, 38, 40, 52, 53, lincoln.o 40
55 Lisp 3, 5, 35, 38, 40, 42,

L5 52, 53, 166 57, 143, 144
L5-err 166 list 35, 39, 50, 165
L5.1 36, 38, 40, 52, 53 Liszt 39, 139, 165
L5.o 40, 57 Logfile 168
--L5-symbol-list 144 logic 11, 28, 31
label 143 logic delay 89
lambda 143 logic structure 6, 62, 63
latch up 60 logical function 42
layout 1, 2, 6-8, 10, 25, lookup-gen-form 54

45, 54-56, 60, 140-144, LSBbuffer 118, 121, 135,
147, 149 136

layout aid 43 macpit 57, 58
layout-control 53, 55 MacPitts 3, 33, 42, 57,
layout-data-path 45-47, 139, 140, 165, 168

53, 98 macpitts-compiler 36, 41,
layout-flags 53, 55 52, 56
layout-gen-form 54 macpitts-directory 42
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macro 35, 50, 143, 144, next address logic 4
158, 165, 168 next state 92, 151

macro definition 41, 42 next state number 27, 82,
macro expansion 36, 41 151
Magic 40, 43, 139-142, 161 nMOS 3, 6, 8, 17, 28, 29,
main 56 31, 32, 43, 56, 58, 61,
maintenance phase 7 64, 80, 81, 93, 97,
make 57 140, 145, 158, 166
make clean 55, 57 no-counter-no-stack 45,
make doc 58 46, 47, 49, 81, 83,
make macpitts 55, 57 152, 153, 161
make pads.1 55 node 22, 23, 33, 34
make pads.o 55 noherald 44
make xref 57 NOR 17, 30, 43, 50, 125,
Makefile 38, 55, 57, 168 126, 132, 133, 159
mapcar 168 nostat 44
mark 53 NOT 29, 30, 31, 148
Mealy FSM 18, 19, 21, 24, note 44

25, 32, 60, 63-65, 68, number-of-tracks 168
70, 72, 73, 76, 77, 90, number-tracks 168
138 object 144, 145, 148, 158,

memory 34 159
microprocessor 5 object 36, 38, 40-42, 44,
microprogram ROM 62, 80, 52, 58, 61

87-89, 91-94, 96, 97, object file 57
100, 102, 103, 117, .obj file 36, 38, 42
120-123, 125, 138, 141, .obj 86
145, 149, 154, 156, 158 OddBuffer 118, 122, 135,

microprogrammed controller 137
4, 5, 8, 40, 139, 144, OddConnect 104, 111, 125,
145, 159, 161 131

minimum feature size 56, OddInverter 103, 108, 111,
143 125, 130

modified domino logic 62, operand 11, 44
72, 73, 91 opt 52

Moore FSM 18-22, 24, 68, opt-c 51
70-73 opt-d 51

MOS 60 opt-n 52
MSC 3, 6, 8, 10, 17, 25- opt-p 52

29, 31-36, 38-41, 52, opt-s 52
57-61, 80, 81, 86-88, optimization 51, 52, 63

S 92, 93, 97, 138, 139, Opus 165, 166, 167
141-144, 148, 158, 159, OR 30
161-164 order 51, 52

multiplexer 11, 16, 25, order-this 52
27-32, 50, 51, 53, 54, order.l 51, 167, 168
61, 82, 84, 87, 149-155 order.o 57

n-type transistor 64 organelle 10, 11, 16, 42,
NAND 43, 125, 127, 129, 43, 46, 50, 53, 54, 80,

132, 133, 168 81, 83-85, 87, 93, 147-
new-states 167 150, 152, 153
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organelle definition 41-43 programmable logic array
organelles-track-number 17, 62, 80

168 propagate update 167
organelles.1 43, 163, 167, $prpr 165

168 pseudo-nMOS 62, 64-66, 77-
organelles.o 36, 42, 43, 81, 90

57, 60, 168 pull down 29, 30, 32, 64-
organization 62, 80, 89, 66, 70, 71, 77-79

91 pull up 30, 32, 60, 64,
ospeed 165 65, 71, 73, 76-79
output port 10, 11, 16, push 25

50, 53, 54, 149, 153 reset 150, 151, 153
p-type transistor 64 read-cif 56
package 8 reader 168
pad 8, 11, 16, 34, 38, 53, recursion 26, 27

55, 56, 94, 95, 153 register 10, 16, 19-21,
pad20b 56 27-29, 31, 33, 34, 45,
padgen.l 55, 56, 166 47, 50, 53-55, 81-87,
padgen.o 57 93, 148-158
pads.l 55-57, 166 register definition 47,
pads.o 57, 166 49, 50
par 28, 50 regular 63
performance 59 remove 165
permutation 52 remove-parameter 165
physical 8 requirement 7, 8, 32, 33,
pin 145 58-63, 65, 68, 70, 72,
PLA 17, 62, 80, 81 73, 77, 80, 159
place 88 reset 82
polysilicon 60 return 25-27, 46, 47, 50,
pop 25 84
port 29, 33, 34, 50, 87, return state 25

167 rinout 56
port definition 50 river 54
port-internal 148 river router 43
port-output 148, 153 ROM 4, 62, 80, 88, 89,
port-state-driver 167 145, 154-158
port-state-value 167 ROM array 94-96, 99, 100,
post-process 44, 50, 51 102, 104, 112, 114,
power 8, 60 115, 117, 118, 120,
pp-form 165 123, 132
precharge 66, 67, 70, 71, ROMO 100, 103, 118, 123,

73, 76 142
predicate 165 ROMl 100, 102, 118, 123,
prepass.l 36, 38, 41, 42, 142

44, 52, 56, 86, 166 ROMnull 100, 103, 123, 125
prepass.o 57 ROMtest.mag 141, 142
process 27, 29, 31, 44-47, route 88

50, 81, 83, 84, 87, 89, row decoder 89, 94, 96,
93, 94, 99, 104, 138, 100, 103, 104, 108,
145-147, 150-152, 155- 117, 118, 125, 146, 147
157, 161
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RowBuffer 104, 114, 118, 108, 111, 113, 122,
132, 135 131, 138, 150

run 60 state number memory 82,
saturation 60 85, 86
SCMOS 3, 6, 7, 31, 32, 40, state transition 19-25,

43, 59, 60, 62, 100, 34, 46, 68, 81-83, 92,
126, 127, 130, 131, 150
134-137, 139, 140, 166 state transition diagram

segment 52 21, 22, 24
sequencer state variable 17-19, 21,
sequencer 45-47, 49, 50, 23, 25, 32, 60

81-87, 93, 97, 138, static circuit check 141
148, 150-153, 159, 161 static electrical check

setq 50 142
setup time 19, 21 statistic 44
side effect 31 stepper 168
signal 8, 16, 17, 21, 23, structural requirement 63

27-30, 33, 34, 47, 49, structure 62-66, 70, 71,
82, 87, 93-96, 99, 152, 73, 74, 77, 78, 80, 88-
154, 156, 161, 167 90

signal definition 47, 50 subroutine 26, 27
signal-state-driver 167 substate 60, 94, 88, 147,
signal-state-value 167 148, 155, 157, 158
silicon compiler 1, 2, 3, superbuffer 43, 135, 136

138, 140, 141, 165 switch level simulation 31
simulation file 141, 142, symbol 36, 40, 53, 55, 86,

161 144
simulation 140 taxi 145, 146, 148, 149,
simulator 140-142, 167 168
single bit data-path 144, technology 59, 140, 141,

148, 158 143, 144, 163
single bit processing 10, technology dependent 43,

16 60, 92, 163, 164
single bit storage 10 technology independent 7,
source 79 60, 92, 100
source definition 47, 50 termcap 165
special 165 terminal display 39
stable 19, 20, 21, 167 test 7, 42, 50, 139, 141,
stack 25, 32, 60, 85, 86 142, 159, 161
stack depth 26, 85 test definition 41, 42, 56
stack overflow 26 test input 147, 148
standard cell 1, 62, 80, test line 51, 52, 95, 147,

87, 88, 91 150, 152, 153, 154
stat 44 test phase 7, 59
state 17, 19, 21-28, 34, test signal 94, 100, 115,

46, 47, 49, 50, 88, 89, 138, 149
94, 145, 146, 155-157, thing 165
167 this-node-column 52

state number 25, 27, 32, this-segment-nodes 52
45, 60, 82, 83, 86, 89, timing 140, 141
92-94, 99, 103-105,
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topCONDfeed 115, 116, 132,
134

tr-traceexit 165
track 17, 51
track-number 168
transistor 29, 30, 60
transmission gate 29, 62,

67, 68, 73-80, 91
Two-State 104, 111, 112,

125, 131, 147
unit 10, 11, 16, 32, 45-

47, 50-54, 60, 81-87,
149-159

unit number 50
UNIX 38, 39, 42, 57, 139
unset 167
/usr/macpit 165, 168
validation 7, 42, 59
Vdd 8, 30, 31
verification 7
vi 38
VLSI 1, 2, 8, 33, 34, 59,

60, 139-141
vsplicing-macro 168
warning 44
Weinberger array 17, 62,

80, 145, 158
well 60
wired AND 29, 31
wired logic 32
word 83
word-length 167
word-size 33
workstation 57, 58
XOR 17, 74, 168
xref 57, 168
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